Data III \& Integers I

CSE 351 Winter 2024

Instructor:

Justin Hsia

Teaching Assistants:

Adithi Raghavan
Aman Mohammed
Connie Chen
Eyoel Gebre
Jiawei Huang
Malak Zaki
Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

http://xkcd.com/257/

Relevant Course Information

* HW2 due tonight, HW3 due Friday, HW4 due next Wednesday
* Lab 1a released
- Some later functions require bit shifting, covered in Lesson 5
- Workflow:

1) Edit pointer. C
2) Run the Makefile (make clean followed by make) and check for compiler errors \& warnings
3) Run ptest (. /ptest) and check for correct behavior
4) Run rule/syntax checker (python3 dlc.py) and check output

- Due Monday $1 / 15$, will overlap a bit with Lab 1b
- We grade just your last submission
- Don't wait until the last minute to submit - need to check autograder output

Lab Synthesis Questions

* All subsequent labs (after Lab 0) have a "synthesis question" portion
- Can be found on the lab specs and are intended to be done after you finish the lab
- You will type up your responses in a .txt file for submission on Gradescope
- These will be graded "by hand" (read by TAs)
* Intended to check your understand of what you should have learned from the lab
- Also great practice for short answer questions on the exams

Lesson Summary (1/2)

* Bit-level operators allow for fine-grained manipulation
- Bitwise AND (\&), OR (|), XOR (^) and NOT (~) operate on the individual bits of the data
- Especially useful with bitmasks, chosen bit vectors used with \& \mid, or ${ }^{\wedge}$
- $b \& 0=0, b \& 1=b \quad$ (set to zero or keep as-is)
-b | $0=b, b \mid 1=1$ (keep as-is or set to one)
- $b \wedge 0=b, b \& 1=\sim b \quad$ (keep as-is or flip the bit)

* Logical operators work on "truthiness" of data
- 0 = False, anything else = True
- Logical AND (\&\&), OR (| |), and NOT (!) \rightarrow always evaluate to 1 for True

Lesson Summary (2/2)

* Choice of encoding scheme is important
- Tradeoffs based on size requirements and desired operations

* Integers represented using unsigned and two's complement representations (sign and magnitude not used in practice)
- Limited by fixed bit width, satisfy desirable arithmetic properties

Lesson Q\&A

* Learning Objectives:
- Compute the effects of bit shifting, bitwise, logical, and arithmetic operations on integers.
- Analyze the benefits and drawbacks of different integer representations (Unsigned, Sign and Magnitude, Two's Complement) and custom encoding schemes.
* What lingering questions do you have from the lesson?
- Chat with your neighbors about the lesson for a few minutes to come up with questions

Practice Questions (1/2)

* Compute the result of the following expressions for char c = 0x81;
- c ^ c
- ~c \& 0xA9
- c || 0x80
-!!c
* Compute the value of signed char sc = 0xF0; (Two's Complement)

Practice Questions (2/2)

* Take the 4-bit number encoding $\mathrm{x}=0 \mathrm{~b} 1011$
* Which of the following numbers is NOT a valid interpretation of x using any of the number representation schemes discussed today?
- Unsigned, Sign and Magnitude, Two’s Complement
A. -4
B. -5
C. 11
D. -3
E. We're lost...

Integer Hardware

* In practice, all modern system use unsigned and two's complement encoding schemes for integers
- Sign and magnitude for integers is a historical artifact, but useful context for design decision and for floating point (next unit)
- Much of the same hardware can be used for both encoding schemes (e.g., addition, subtraction)
* Fun fact: Java was designed to only support signed data types
- Assumed easier for beginners to understand than having unsigned as well (i.e., eliminate potential sources of error)
- Unsigned operation support provided with Unsigned Integer API (starting with Java SE 8 in 2014)

Discussion Questions

* Discuss the following question(s) in groups of 3-4 students
- I will call on a few groups afterwards so please be prepared to share out
- Be respectful of others' opinions and experiences
* Thinking about the (implicit and explicit) design decisions for Two's Complement, what are some of the advantages and disadvantages of choosing to:
- Represent consecutive (i.e., no gaps) integers
- Represent the same number of positives and negatives
- Positive number encodings match unsigned

Group Work Time

* During this time, you are encouraged to work on the following:

1) If desired, continue your discussion
2) Work on the homework problems
3) Work on the lab (if applicable)

* Resources:
- You can revisit the lesson material
- Work together in groups and help each other out
- Course staff will circle around to provide support

