
CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

Floating Point
CSE 351 Winter 2024

Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen
Eyoel Gebre
Jiawei Huang
Malak Zaki
Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

http://www.smbc-comics.com/?id=2999

http://www.smbc-comics.com/?id=2999

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

Relevant Course Information

❖ HW4 due tonight, HW5 due Friday, HW6 due Monday

❖ Lesson questions are graded on completion

▪ Don’t change your answer afterward; misrepresents your understanding

❖ Lab 1a final late submissions due tonight at 11:59 pm

▪ Submit pointer.c and lab1Asynthesis.txt

▪ Make sure there are no lingering printf statements in your code!

❖ Lab 1b due Monday (1/22)

▪ Submit aisle_manager.c, store_client.c, and lab1Bsynthesis.txt

2

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

Lab 1b Aside: C Macros

❖ C macros basics:

▪ Basic syntax is of the form: #define NAME expression

▪ Allows you to use “NAME” instead of “expression” in code
• Does naïve copy and replace before compilation – everywhere the characters “NAME” appear in

the code, the characters “expression” will now appear instead

• NOT the same as a Java constant

▪ Useful to help with readability/factoring in code

❖ You’ll use C macros in Lab 1b for defining bit masks

▪ See Lab 1b starter code and Lesson 4 (card operations) for examples

3

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

4

Floating Point

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

Lesson Summary (1/2)

❖ Floating point approximates real numbers (large, small, & special):

▪ Normalized case: ±1 × Mantissa × 2Exponent = (-1)S × 1.M × 2(E–bias)

▪ Mantissa approximates fractional portion
• Size of mantissa field determines our

representable precision

• Exceeding mantissa length causes rounding

▪ Exponent in biased notation (bias = 2w-1 – 1)
• Size of exponent field determines our representable range

• Outside of representable exponents is overflow and underflow

▪ double (64 bits: [S (1)|E (11)|M (52)]) available if more precision needed

5

S E (8) M (23)
31 30 23 22 0

E M Meaning

0b0…0 anything ± denorm num
(including 0)

anything else anything ± norm num
0b1…1 0 ± ∞
0b1…1 non-zero NaN

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

Lesson Summary (2/2)

❖ Limitations of FP affect programmers all the time (!)

▪ Overflow, underflow, rounding
• Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of

the exponent

▪ Floating point arithmetic is NOT associative or distributive
• ∞ and NaN are valid operands, but can produce unintuitive results

▪ Do NOT use equality (==) with floating point numbers

▪ Converting between integral and floating point data types does change the bits
• e.g., int i = 2; // stored as 0x00000002, float f = i; // stored as 0x40000000

6

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

Lesson Q&A

❖ Learning Objectives:

▪ Describe how the bits in floating point are organized and how they represent real
numbers (and special cases).

▪ Describe the distribution of representable values in floating point.

▪ Explain the limitations of floating point and write C code that accounts for them.

❖ What lingering questions do you have from the lesson?

▪ Chat with your neighbors about the lesson for a few minutes to come up with
questions

7

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

8

Floating Point – Practice

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

Polling Questions (1/2)

❖ What is the value encoded by the following floating point number?

0b 0 | 1000 0000 | 110 0000 0000 0000 0000 0000

▪ bias = 2w-1-1

▪ exponent = E – bias

▪ mantissa = 1.M

❖ Convert the decimal number -7.375 = -1.11011 x 22 into floating point
representation.

9

2-1 = 0.5
2-2 = 0.25
2-3 = 0.125
2-4 = 0.0625

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

Polling Questions (2/2)

❖ What is the value of the following floats?

▪ 0x00000000

▪ 0xFF800000

❖ For the following code, what is the smallest value of n that will encounter
a limit of representation?

float f = 1.0; // 2^0

for (int i = 0; i < n; ++i)
f *= 1024; // 1024 = 2^10

printf("f = %f\n", f);

10

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

Homework Setup

❖ Let float f = 1073741824; // 2^30;

❖ What’s the smallest power of 2 for g such that f + g != f?

11

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

12

Floating Point – Context

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

Floating Point Issues in Real Life

❖ 1991: Patriot missile targeting error
▪ Time in system stored in integer (tenths of a second since boot)

▪ Converted to seconds by multiplying by 0.1 = 0.0 00112 leading
to erroneous time (error grows the longer system has been on)

❖ 1996: V88 Ariane 501 rocket exploded 37 seconds after launch
▪ Reused code from Ariane 4 inertial reference platform
▪ Overflow when converting a 64-bit floating point number

to a 16-bit integer (not protected by extra lines of code)

❖ Other related bugs:
▪ 1982: Vancouver Stock Exchange 50% error in less than 2 years due to truncation

▪ 1994: Intel Pentium FDIV (floating point division) hardware bug costs company
$475 million in recall

13

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

More on Floating Point History

❖ Early days

▪ First design with floating-point arithmetic in 1914 by Leonardo
Torres y Quevedo

▪ Implementations started in 1940 by Konrad Zuse, but with differing
field lengths (usually not summing to 32 bits) and different subsets
of the special cases

❖ IEEE 754 standard created in 1985

▪ Primary architect was William Kahan, who won a Turing Award for
this work

▪ Standardized bit encoding, well-defined behavior for all arithmetic
operations

14

Kahan

Zuse

Quevedo

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

Floating Point in the “Wild”

❖ 3 formats from IEEE 754 standard widely used in computer hardware and
languages

▪ In C, called float, double, long double

❖ Common applications:

▪ 3D graphics: textures, rendering, rotation, translation

▪ “Big Data”: scientific computing at scale, machine learning

❖ Non-standard formats in domain-specific areas:

▪ Bfloat16: training ML models;
range more valuable than precision

▪ TensorFloat-32: Nvidia-specific
hardware for Tensor Core GPUs

15

Type S bits E bits M bits Total bits

Half-precision 1 5 10 16

Bfloat16 1 8 7 16

TensorFloat-32 1 8 10 19

Single-precision 1 8 23 32

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

Discussion Question

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ How do you feel about floating point?

▪ Do you feel like the limitations are acceptable?

▪ Does this affect the way you’ll think about non-integer arithmetic in the future?

▪ Are there any changes or different encoding schemes that you think would be an
improvement?

16

CSE351V00: IntroductionL06: Floating Point CSE351, Winter 2024

Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the homework problems

3) Work on the lab (if applicable)

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support

17

