
CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

x86-64 Programming III
CSE 351 Winter 2024

Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen
Eyoel Gebre
Jiawei Huang
Malak Zaki
Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

http://xkcd.com/571/

http://xkcd.com/571/

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

Relevant Course Information

❖ Lab 1a regrade requests open on Gradescope

❖ Lab 1b submissions close tonight

❖ Lab 2 due next Friday (2/2)

▪ Section tomorrow on to help prep you for Lab 2 – use the midterm reference sheet
& bring your laptop!

▪ Optional GDB Tutorial in Ed Lessons

❖ Midterm (take home, 2/8–2/10)

▪ Make notes and use the midterm reference sheet

▪ Form study groups and look at past exams!

2

https://courses.cs.washington.edu/courses/cse351/24wi/exams/ref-mt.pdf

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

Extra Credit

❖ All labs starting with Lab 2 have extra credit portions

▪ These are meant to be fun extensions to the labs

❖ Extra credit points don't affect your lab grades

▪ From the course policies: “they will be accumulated over the course and will be
used to bump up borderline grades at the end of the quarter.”

▪ Make sure you finish the rest of the lab before attempting any extra credit

3

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

4

x86-64 Programming III

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

Lesson Summary (1/3)

❖ Labels (e.g., main, .L0) refer to an instruction address and used as jump
targets in assembly

❖ Control flow in x86 determined by Condition Codes

▪ Set instructions (set*)
read out flag values (0/1)

▪ Jump instructions (j*)
use flag values to determine
next instruction to execute

▪ Result of 1st instruction
gets compared against 0
in a way determined
by 2nd instruction:

(op) s, d cmp a, b test a, b

je sete “Equal” d (op) s == 0 b-a == 0 b&a == 0

jne setne “Not equal” d (op) s != 0 b-a != 0 b&a != 0

js sets “Signed” (negative) d (op) s < 0 b-a < 0 b&a < 0

jns setns “Not signed” (nonnegative) d (op) s >= 0 b-a >= 0 b&a >= 0

jg setg “Greater” d (op) s > 0 b-a > 0 b&a > 0

jge setge “Greater or equal” d (op) s >= 0 b-a >= 0 b&a >= 0

jl setl “Less” d (op) s < 0 b-a < 0 b&a < 0

jle setle ”Less or equal” d (op) s <= 0 b-a < 0 b&a <= 0

ja seta “Above” (unsigned >) d (op) s > 0U b >U a b&a > 0U

jb setb “Below” (unsigned <) d (op) s < 0U b <U a b&a < 0U

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

Lesson Summary (2/3)

❖ Most control flow constructs (e.g., if-else, for-loop, while-loop) can be
implemented in assembly using combinations of conditional and
unconditional jumps

▪ Differences come from placement of jumps and whether they jump forward or
backwards in code

6

<!test>
j*' .L2
<then>
jmp done

.L2:
<else>

done:

top: <body>
<test>
j* top

done:

top: <!test>
j*' done
<body>
jmp top

done:

<!test>
j*' done

top: <body>
<test>
j* top

done:

<init>
while (<test>) {

<loop body>
<update>

}

if (<test>)
<then>

else
<else>

do {
<body>

} while (<test>)

while (<test>) {
<body>

}

<test>
j* .L2
<else>
jmp done

.L2:
<then>

done:

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

Lesson Summary (3/3)

❖ Switch statements can be implemented using
jump tables and indirect jump instructions

▪ Jump tables are arrays of pointers to code blocks

▪ Indirect jump jumps to address stored somewhere in
memory instead of target specified in instruction

7

switch (x) {
case 1: <code> break;
case 2: <code>
case 3: <code> break;
case 5:
case 6: <code> break;
case 7: <code> break;
default: <code>

}

Code
Blocks

Memory

0

1

2

3

4

5

6

7

Jump table
.section .rodata

.align 8
.L4:

.quad .L9 # x = 0

.quad .L8 # x = 1

.quad .L7 # x = 2

.quad .L10 # x = 3

.quad .L9 # x = 4

.quad .L5 # x = 5

.quad .L5 # x = 6

.quad .L3 # x = 7

cmpq $7, %rdi
ja .L9 # default
jmp *.L4(,%rdi,8)

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

Lesson Q&A

❖ Learning Objectives:

▪ Without executing, describe the overall purpose of snippets of x86-64 assembly
code containing arithmetic, if-else statements, and/or loops.

❖ What lingering questions do you have from the lesson?

▪ Chat with your neighbors about the lesson for a few minutes to come up with
questions

8

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

9

x86-64 Programming III –
Practice

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

Polling Question (1/2)

A. cmpq %rsi, %rdi
jle .L4

B. cmpq %rsi, %rdi
jg .L4

C. testq %rsi, %rdi
jle .L4

D. testq %rsi, %rdi
jg .L4

10

long absdiff(long x, long y) {
long result;
if (x > y)
result = x-y;

else
result = y-x;

return result;
}

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

absdiff:

x > y:
movq %rdi, %rax
subq %rsi, %rax
ret

.L4: # x <= y:
movq %rsi, %rax
subq %rdi, %rax
ret

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

Polling Question (2/2)

❖ The following is assembly code for a for-loop; identify the corresponding
parts (Init, Test, Update)
▪ i → %eax, x → %rdi, y → %esi

for(______; ______; ______)
11

movl $0, %eax
.L2: cmpl %esi, %eax

jge .L4
movslq %eax, %rdx
leaq (%rdi,%rdx,4), %rcx
movl (%rcx), %edx
addl $1, %edx
movl %edx, (%rcx)
addl $1, %eax
jmp .L2

.L4:

Line
1
2
3
4
5
6
7
8
9
10
11

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

12

x86-64 Programming III –
Context

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

Labels & Jumps in C (goto)

❖ C allows goto as means of transferring control (jump)

▪ Closer to assembly programming style

▪ Generally considered bad coding style

13

long absdiff(long x, long y) {
long result;
if (x > y)

result = x-y;
else

result = y-x;
return result;

}

long absdiff_j(long x, long y) {
long result;
int ntest = (x <= y);
if (ntest) goto Else;
result = x-y;
goto Done;

Else:
result = y-x;

Done:
return result;

}

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

Labels & Jumps in C (goto)

❖ C allows goto as means of transferring control (jump)

▪ Closer to assembly programming style

▪ Generally considered bad coding style… listen to Kernighan & Ritchie:

14

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

Mainstream ISAs, Revisited

15

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Mostly research
(some traction in embedded)
RISC-V Instruction Set

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

Discussion Question

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ We taught you assembly using x86-64; you didn’t have a choice

▪ What are some of the advantages and drawbacks of this choice?

▪ What are some possible assumptions we are making about our students or values
we are forcing on our students with this choice?

16

CSE351V00: IntroductionL09: x86-64 Programming III CSE351, Winter 2024

Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the homework problems

3) Work on the lab (if applicable)

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support

17

