
CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Buffer Overflow
CSE 351 Winter 2024

Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen
Eyoel Gebre
Jiawei Huang
Malak Zaki
Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

http://xkcd.com/1353/

Alt text:  I looked at some of the data dumps from vulnerable sites, and 
it was ... bad. I saw emails, passwords, password hints. SSL keys and 
session cookies. Important servers brimming with visitor IPs. Attack 
ships on fire off the shoulder of Orion, c-beams glittering in the dark 
near the Tannhäuser Gate. I should probably patch OpenSSL.

http://xkcd.com/1513/


CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Relevant Course Information

❖ Mid-quarter survey due tonight!

❖ HW12 due tonight, HW13 due Wednesday, HW14 due Monday (2/12)

❖ Lab 3 released today, due next Friday (2/16)

▪ You will have everything you need by the end of this lecture

❖ Midterm starts Thursday (Friday lecture is extra support hour)

▪ Instructions will be posted on Ed Discussion

▪ Gilligan’s Island Rule: discuss high-level concepts and give hints, but not solving the 
problems together

▪ Ed Discussion (private posts) and support hours to answer clarifying questions

2



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

3

Buffer Overflow



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Lesson Summary (1/3)

❖ A buffer is an array that holds temporary data 
(e.g., user/file/network input)

❖ Buffer overflow is writing past the end of the buffer

▪ Common in C/Unix/Linux due to lack of bounds checking

▪ Vulnerable functions include gets, strcpy, scanf, 
fscanf, sscanf

❖ Buffer overflow exploit:  stack smashing

▪ Overflow local array to alter stack contents

▪ Commonly used to alter procedure return address

4

00

00

00

00

Lower Addresses

Higher Addresses

buf[0]

buf[7]

Return
Address 00

40

dd

bf

'\0'

'f'

'e'

'd'

'c'

'b'

'a'

'o'

'l'

'l'

'e'

'h'



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Lesson Summary (2/3)

❖ A buffer is an array that holds temporary data 
(e.g., user/file/network input)

❖ Buffer overflow is writing past the end of the buffer

▪ Common in C/Unix/Linux due to lack of bounds checking

▪ Vulnerable functions include gets, strcpy, scanf, 
fscanf, sscanf

❖ Buffer overflow exploit:  code injection

1) Put exploit/machine code in buffer

2) Pad to reach stack frame’s return address

3) Replace return address with address of the buffer

5

return addr

callee's
stack
frame

Higher Addresses

&buf[0]

exploit code

pad

Lower Addresses

&buf[0]

caller's
stack
frame



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Lesson Summary (3/3)

❖ Dealing with buffer overflow attacks

▪ Use array bounds checking
• Manually (i.e., implement yourself) or 

automatically (e.g., use safe functions or non-C language)

▪ Add a stack canary after the buffer
• Secret value (changes on each execution) that shouldn’t change

▪ Randomized stack offsets
• Makes finding the address of exploit code more difficult

▪ Non-executable memory regions (e.g., the stack)
• Prevent exploit code from being placed and executed there

6

main’s
stack frame

⋮
other stack 

frames
⋮

Random
allocation

return addr

buffer

canary

Higher Addresses

Lower Addresses
&buf[0]?



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Lesson Q&A

❖ Learning Objectives:

▪ Define buffer overflow and explain how it occurs.

▪ Identify elements of C programs that make them vulnerable to buffer overflow.

▪ Identify methods of protecting against buffer overflow.

▪ Perform stack smashing and code injection exploits.

❖ What lingering questions do you have from the lesson?

▪ Chat with your neighbors about the lesson for a few minutes to come up with 
questions

7



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

8

Buffer Overflow –
Practice



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Polling Question

❖ smash_me is vulnerable to stack smashing!

❖ What is the minimum number of characters that gets must read in order 
for us to change the return address to a stack address? 

▪ For example: (0x 00 00 7f ff ca fe f0 0d)

9

Previous
stack frame

00 00 00 00

00 40 05 d1

. . .

[0]

smash_me:
subq $0x40, %rsp
...
leaq 16(%rsp), %rdi
call gets
...

A. 27
B. 30
C. 51
D. 54
E. We’re lost…



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Lab Setup/Demo

❖ Printable vs. nonprintable characters (asciitable.com)

▪ Input from terminal generally restricted to printable characters (~ 0x20 – 0x7E)

▪ Need full range of 1-byte character values (0x00 – 0xFF) for exploits

❖ Lab 3 workflow:

▪ Design exploit string for task

▪ Type out exploit string as printable characters in .txt file

▪ Use sendstring to convert .txt→ .bytes file

▪ Pass .bytes file into bufbomb to be read by Gets() when called by getbuf()

▪ Use GDB to verify that stack is modified as desired (x /<#>gx $rsp)

10

https://asciitable.com/


CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

11

Buffer Overflow –
Context



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Exploits Based on Buffer Overflows

❖ ⚠️ Buffer overflow bugs can allow attackers to execute arbitrary code on 
victim machines ☠️

▪ Most commonly executing a “root shell” – terminal with elevated privileges

❖ Distressingly common in real programs

▪ Original “Internet worm” (1988)

▪ Heartbleed (2014, affected 17% of servers) & Cloudbleed (2017)

▪ Hacking embedded devices (e.g., cars, smart home devices, Internet of Things)

12



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

The Morris Worm (1988)

❖ Early versions of the finger server (fingerd) used gets to read the 
argument sent by the client

▪ e.g., finger droh@cs.cmu.edu

❖ The Morris Worm attacked fingerd server with phony argument:

▪ finger "exploit-code padding new-return-addr"

▪ Exploit code executed a root shell on the victim machine, then scanned for other 
machines to attack

❖ Fallout/legacy (1989 article)

▪ Invaded ~6000 computers in hours (10% of the Internet)

▪ The author, Robert Morris, was prosecuted
• First conviction under 1986 Computer Fraud and Abuse Act

• Now an MIT professor
13

https://linux.die.net/man/8/fingerd
https://dl.acm.org/doi/10.1145/66093.66095
https://en.wikipedia.org/wiki/Robert_Tappan_Morris


CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Heartbleed (2014)

14



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Heartbleed (2014)

15



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Heartbleed (2014)

16



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Heartbleed Details

❖ Buffer over-read in OpenSSL

▪ Open source security library

▪ Bug in a small range of versions

❖ “Heartbeat” packet: message & length

▪ Server echoes back data to match length

▪ Allowed attackers to read contents of memory

❖ ~17% of Internet affected

▪ e.g., Github, Yahoo, Stack Overflow, 
Amazon Web Services

17

By FenixFeather - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=32276981



CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Hacking Cars (2010)

❖ UW CSE research demonstrated wirelessly hacking a car using buffer 
overflow

▪ http://www.autosec.org/pubs/cars-oakland2010.pdf

❖ Overwrote the onboard control system’s code

▪ Disable brakes, unlock doors, turn engine on/off

18

http://www.autosec.org/pubs/cars-oakland2010.pdf


CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Hacking DNA Sequencing Tech (2017)

❖ UW CSE project: Computer Security and Privacy in DNA Sequencing
Ney et al. (2017): https://dnasec.cs.washington.edu/

▪ Potential for malicious code to be encoded in DNA!

▪ Attacker can gain control of DNA sequencing machine when malicious DNA is read

19

https://en.wikipedia.org/wiki/DNA_sequencing
https://dnasec.cs.washington.edu/


CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Think this is cool?

❖ Take CSE 484 (Security)

▪ Several different kinds of buffer overflow exploits

▪ Many ways to counter them

❖ Nintendo fun!

▪ Using glitches to rewrite code: https://www.youtube.com/watch?v=TqK-2jUQBUY

▪ Flappy Bird in Mario: https://www.youtube.com/watch?v=hB6eY73sLV0

20

https://www.youtube.com/watch?v=TqK‐2jUQBUY
https://www.youtube.com/watch?v=hB6eY73sLV0


CSE351V00:  IntroductionL14:  Buffer Overflow CSE351, Winter 2024

Discussion Questions

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ Code injection attacks are a form of “hacking” that takes advantage of a 
security vulnerability (e.g., buffer overflow).  “Hacking” is now 
commonplace in society and media.

▪ What are some of the possible consequences & objectives of hacking (i.e., to what 
ends might someone engage in hacking)?

▪ What are some reasons why vulnerable systems keep getting connected to the 
Internet?

21


