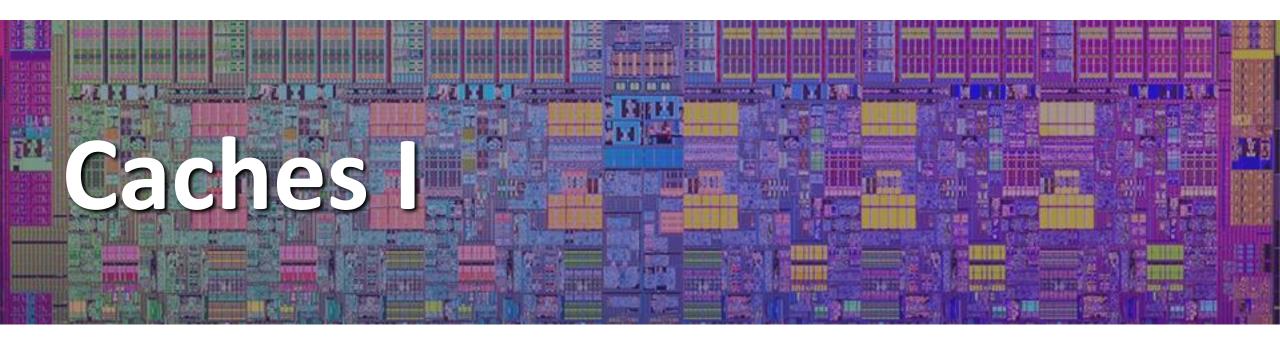
CSE351, Winter 2024

Memory & Caches I CSE 351 Winter 2024

Instructor:

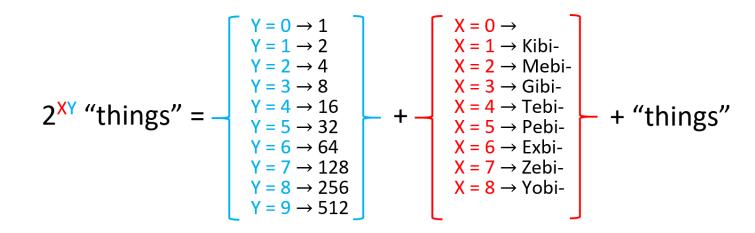
Justin Hsia


Teaching Assistants:

Adithi Raghavan Aman Mohammed Connie Chen Eyoel Gebre Jiawei Huang Malak Zaki Naama Amiel Nathan Khuat Nikolas McNamee Pedro Amarante Will Robertson

Relevant Course Information

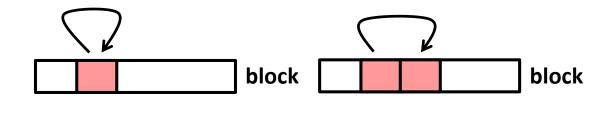
- HW14 due Monday, HW15 due Wednesday
- Lab 3 due next Friday (2/16)
 - Make sure to look at HW14 before starting
- Midterm starts tomorrow (2/8-10)
 - Only private posts on Ed Discussion
 - Staff cannot help you study during the exam window only point you to resources and clarify the questions
 - We will post clarifications and corrections about the exam on Ed as we go

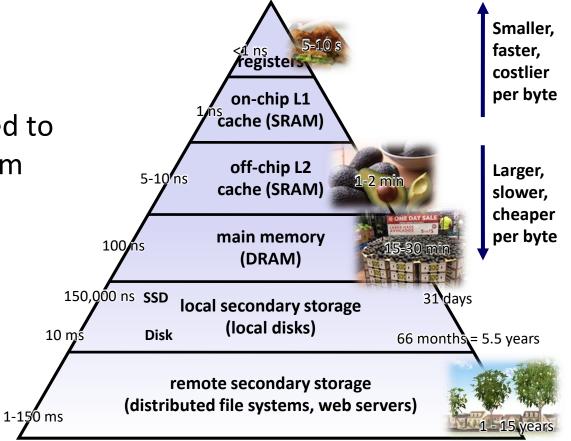


Lesson Summary (1/3)

IEC prefixes are unambiguously powers of 2:

SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol
10 ³	Kilo-	K	2 ¹⁰	Kibi-	Ki
10 ⁶	Mega-	М	2 ²⁰	Mebi-	Mi
10 ⁹	Giga-	G	2 ³⁰	Gibi-	Gi
10 ¹²	Tera-	Т	2 ⁴⁰	Tebi-	Ti
10 ¹⁵	Peta-	Р	2 ⁵⁰	Pebi-	Pi
10 ¹⁸	Exa-	E	2 ⁶⁰	Exbi-	Ei
10 ²¹	Zetta-	Z	2 ⁷⁰	Zebi-	Zi
10 ²⁴	Yotta-	Y	2 ⁸⁰	Yobi-	Yi

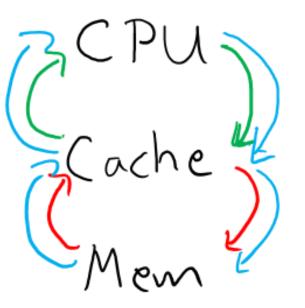

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)



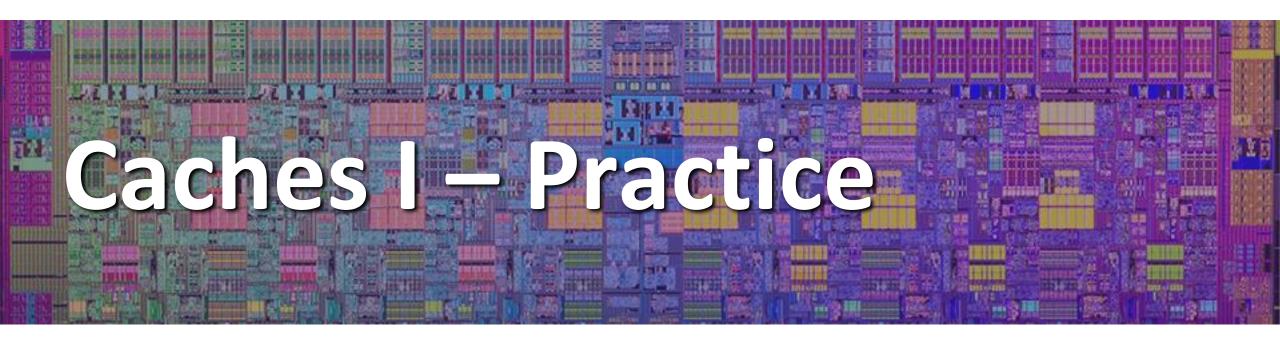
Lesson Summary (2/3)

- Memory Hierarchy
 - Successively higher levels contain "most used" data from lower levels
 - Caches are intermediate storage levels used to optimize data transfers between any system elements with different characteristics

• Exploits *temporal and spatial locality*:



Lesson Summary (3/3)

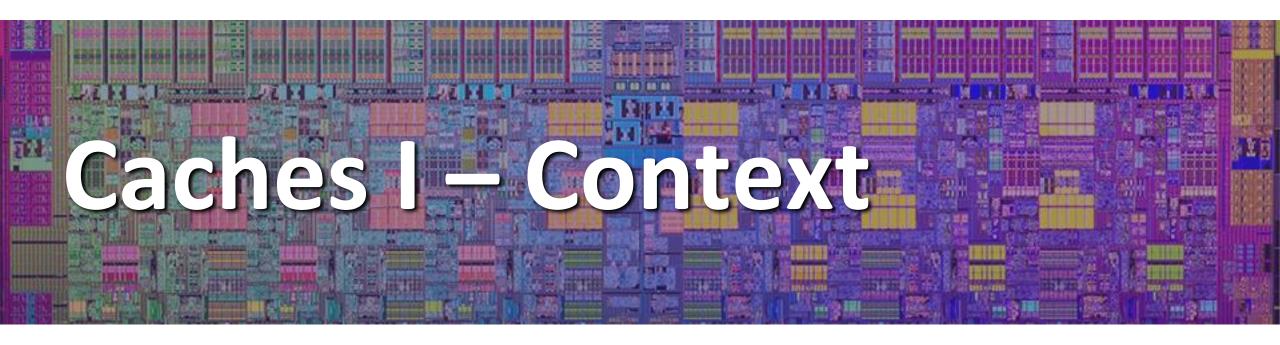

- Cache Performance
 - Ideal case: found in cache (*cache hit*), return requested data immediately
 - Bad case: not found in cache (*cache miss*), search in next level
 - Bring entire *cache block* containing requested data into this cache once found
 - Average Memory Access Time (AMAT) = HT + MR × MP
 - Hurt by Miss Rate and Miss Penalty

Hit takes HT Miss takes HT+MP

Lesson Q&A

- Learning Objectives:
 - Describe the memory hierarchy and explain the relationship between cost, size, and access speed of its layers.
 - Analyze how changes [to cache parameters and policies] affect performance metrics such as AMAT
- What lingering questions do you have from the lesson?
 - Chat with your neighbors about the lesson for a few minutes to come up with questions

Polling Questions (1/2)


- Convert the following to or from IEC:
 - 512 Ki-books
 - 2²⁷ caches
- Compute the average memory access time (AMAT) for the following system properties:
 - Hit time of 1 ns
 - Miss rate of 1%
 - Miss penalty of 100 ns

Polling Questions (2/2)

 Processor specs: 200 ps clock, MP of 50 clock cycles, MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT =

- Which improvement would be best?
 A. 190 ps clock
 - **B.** Miss penalty of 40 clock cycles
 - **C.** MR of 0.015 misses/instruction

AMAT, Revisited

Average Memory Access Time (AMAT): average time to access memory considering both hits and misses
 AMAT = Hit time + Miss rate × Miss penalty

(abbreviated AMAT = HT + MR × MP)

- We called this a cache performance metric
 - This isn't the only metric we could have used!

Metrics in Computing

- Generally, folks care most about <u>performance</u>
 - Energy-efficiency is more important now since the plateau in 2004/2005
 - This is why we have so many specialized chips nowadays
- Really, this is just efficiency making efficient use of the resources that we have
 - Performance: cycles/instruction, seconds/program
 - Energy efficiency: performance/watt
 - Memory: bytes/program, bytes/data structure

Metrics

- What do we do with metrics?
 - We tend to optimize along them!
 - Especially when jobs/funding depend on better performance along some metric
 - See all of Intel under "Moore's Law"
- Sometimes, strange incentives emerge
 - "Minimize the number of bugs on our dashboard"
 - Does it count if we make the bugs invisible?
 - "Make this faster for our demo in a week"
 - Shortcuts might hurt performance at scale
 - "Minimize our average memory access time"
 - What if we add *more* memory accesses that we know will hit?

Metrics and Success

- Success is defined along metrics
 - This affects how we measure and optimize
- Let's say that we choose performance/program or performance/program set (*i.e.*, benchmarks):
 - 1. Measure existing performance
 - 2. Come up with a bunch of optimizations that would improve performance
 - 3. Select a few to build into the "next version"

Metrics and Success

- Success is defined along metrics
 - This affects how we measure and optimize
- Let's say that we choose profit/year or stock price:
 - Success means earning more profit than last year
 - Improvement or optimizations might include:
 - Reduce expenses, cut staff
 - Sell more things or fancier things (*e.g.*, in-app purchases)
 - Make people pay monthly for things they could get for free
 - Increase advertising revenue:

The New York Times
Whistle-Blower Says Facebook 'Chooses Profits Over Safety'
rances Haugen, a Facebook product manager who left the ompany in May, revealed that she had provided internal

documents to iournalists and others

Metrics and Success

- Success is defined along metrics
 - This affects how we measure and optimize
- * Let's say that we choose **minoritized participation in computing**:
 - What does success/participation mean (and dangers)?
 - Women? BIPOC? All minoritized lumped together?
 - Might optimize for one group at the expense of others
 - Taking intro? Passing intro? Getting a degree? Getting a job?
 - Says nothing about retention or participation/decision-making level

Design Considerations

- Regardless of what we build, the way that we define success shapes the systems we build
 - Choose your metrics carefully
 - There's more to choose from than performance (*e.g.*, usability, access, simplicity, agency)
- Metrics are a "heading" (in the navigational sense)
 - Best to reevaluate from time to time in case you're off course or your destination changes

Discussion Questions

- Discuss the following question(s) in groups of 3-4 students
 - I will call on a few groups afterwards so please be prepared to share out
 - Be respectful of others' opinions and experiences
- * Let's say your (main) metric for college is to get a 4.0 overall GPA.
 - What are some potential unintended consequences of this metric?
 - What are some other potential metrics you could use for college?

Group Work Time

- During this time, you are encouraged to work on the following:
 - 1) If desired, continue your discussion
 - 2) Work on the homework problems
 - 3) Work on the lab (if applicable)
- Resources:
 - You can revisit the lesson material
 - Work together in groups and help each other out
 - Course staff will circle around to provide support