W UNIVERSITY of WASHINGTON L19: Memory Allocation I CSE351, Winter 2024

Memory Allocation I CSE 351 Winter 2024

Guest Lecturer:

Aman Mohammed

Instructor:

Justin Hsia

Teaching Assistants:

Adithi Raghavan Connie Chen

Malak Zaki Jiawei Huang

Naama Amiel Nikolas McNamee

Nathan Khuat Pedro Amarante

Eyoel Gebre Will Robertson

Adapted from https://xkcd.com/1093/

WHEN WILL WE FORGET?

BASED ON US CENSUS BUREAU NATIONAL POPULATION PROJECTIONS

ASSUMING WE DON'T REMEMBER CULTURAL EVENTS FROM BEFORE AGE 5 OR 6

BY THIS YEAR:	THE MAJORITY OF AMERICANS WILL BE TOO YOUNG TO REMEMBER:
2016	RETURN OF THE JEDI RELEASE.
2017	THE FIRST APPLE MACINTOSH
2018	NEW COKE
2019	CHALLENGER
2020	CHERNOBYL
2021	BLACK MONDAY
2022	THE REAGAN PRESIDENCY
2023	THE BERLIN WALL
2024	HAMMERTIME
2025	THE SOVIET UNION
2026	THE LA RIOTS
2027	LORENA BOBBITT
2028	THE FORREST GUMP RELEASE.
2029	THE RWANDAN GENOCIDE
2030	OT SIMPSON'S TRIAL
2038	ATIME BEFORE FACEBOOK
2039	VH1's I LOVE THE 90s
2040	HURRICANE KATRINA
2041	THE PLANET PLUTO
2042	THE FIRST IPHONE
2047	ANYTHING EMBARRASSING YOU DO TODAY

Relevant Course Information

- hw17 due tonight
- hw18 due Friday (2/23)
 - Lab 4 preparation!
- hw19 due Monday (2/26)
- Lab 4 due next week on Friday (3/1)
 - Section tomorrow intended to help prepare you for Lab 4
- Midterm scores posted
 - See Ed post #513 for common misconceptions and deductions
 - Regrade requests open until this Friday (2/23) 11:59PM

Growth vs. Fixed Mindset

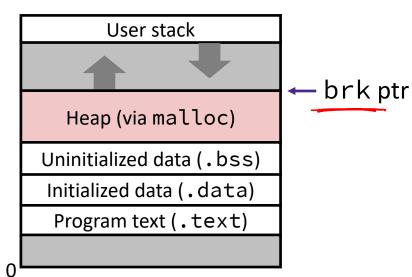
CSE351, Winter 2024

- Students can be thought of as having either a "growth" mindset or a "fixed" mindset (based on research by Prof. Carol Dweck)
 - "In a fixed mindset students believe their basic abilities, their intelligence, their talents, are just fixed traits. They have a certain amount and that's that, and then their goal becomes to look smart all the time and never look dumb."
 - "In a growth mindset students understand that their talents and abilities can be developed through effort, good teaching and persistence. They don't necessarily think everyone's the same or anyone can be Einstein, but they believe everyone can get smarter if they work at it."

L19: Memory Allocation I CSE351, Winter 2024

Lesson Summary (1/3)

Dynamic memory allocation is used when size or lifetime is not known

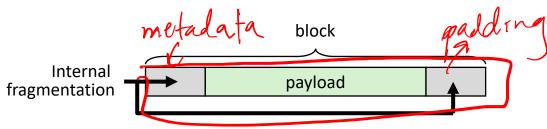

until runtime

• Memory allocated in the heap segment of memory:

In C: void* malloc(size_t size)

In C: void free (void* p)

■ In Java: **new** → heap

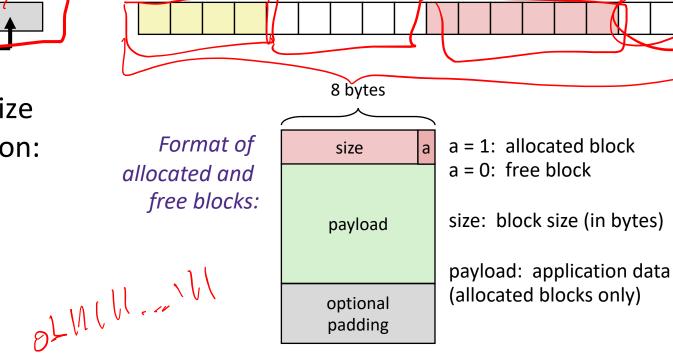

- Managed by dynamic memory allocator
 - Implicit: automatic deallocations, Explicit: manual deallocations
 - Performance metrics: throughput, memory utilization

ops/unit fine

usable.
total sixe

Lesson Summary (2/3)

- The heap is divided into <u>allocated</u> and <u>free</u> heap blocks
 - Fragmentation: <u>internal</u> is non-payload space within blocks, <u>external</u> is free space between allocated blocks

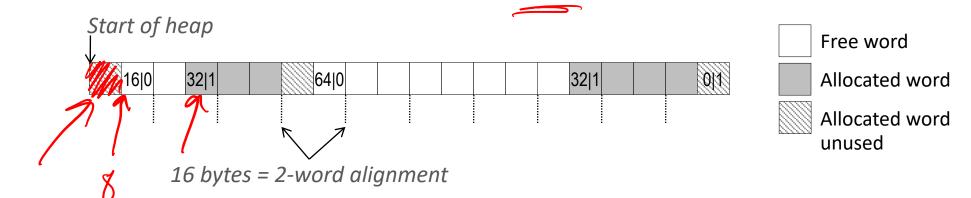


Blocks have headers with size and is-allocated? Information:

$$X = size | a$$

$$q = x f | a$$

$$\pi = x f | a$$



External fragmentation

Lesson Summary (3/3)

= 8-byte word

- Implicit free list example
- Heap blocks (size|is-allocated?): 16|0, 32|1, 64|0, 32|1

- 16-byte alignment for (1) heap block size and (2) payload address
 - Padding for size is considered part of previous heap block (internal fragmentation)
 - May require initial padding at start of heap
- Special one-word marker (0|1) marks end of list
 - Zero size is distinguishable from all other blocks

CSE351, Winter 2024

Lesson Q&A

- Terminology:
 - Dynamically-allocated data: malloc, free
 - Allocators: implicit vs. explicit allocators, heap blocks, implicit vs. explicit free lists
 - Heap fragmentation: internal vs. external, padding, alignment
 - Header, heap block size, is-allocated? bit
- Learning Objectives:

Use malloc and free in C programs to manage dynamic data.

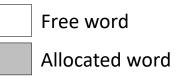
- Explain the tradeoffs between different allocator implementations, [policies, and strategies].
- What lingering questions do you have from the lesson?

CSE351. Winter 2024

Practice Questions (1/2)

- Which of the following statements is FALSE?
 - A. Temporary arrays should not be allocated on the Heap
 - B. malloc returns an address of a payload that is filled with mystery data True malloc reserves space, calloc
 - C. Peak memory utilization is a measure of both internal and external fragmentation True $pMU = \frac{payloads}{pmI_{inds} + internal} + external$
 - D. An allocation failure will cause your program to stop
 - E. We're lost...

Practice Questions (2/2)


How many "flags" can we fit in our header if our allocator uses 16-byte alignment?

If we placed a new "flag" in the second least significant bit, write out a C expression that will extract this new flag from header

(header & oblo) >> 1 (header >> 1) & 1 !! (header & oblo)

12

Homework Setup

Implicit free list that uses 8-byte headers and 8-byte alignment. The current blocks on the heap are numbered and sized as follows.

Draw out the heap starting at address "0".

What is the address of each allocated block's payload?

How much padding does each allocated

block have?

	Size	Турс	request	
is the address of each allocated block's ad?	16 B	allocated	malloc(8)	
$)_{2}$	40 B	free	n/a	
nuch padding does each allocated	32 B	allocated	malloc(20)	
have? bloch Size - header - p-size 4	16 B	free	n/a	
block Size - nedati	48 B	allocated	malloc(35)	
0,415	24 B	free	n/a	

Type

Request

Size

10, 40			6	24 B	free	n/a	
1-10	30/1	16/0 48	(24/0	
[6] 40,0				1 -	-]-		
		Ma W	()	1		7774	
The Way	164		1112				1

Group Work Time

- During this time, you are encouraged to work on the following:
 - 1) If desired, continue your discussion
 - 2) Work on the homework problems
 - 3) Work on the current lab

Resources:

- You can revisit the lesson material
- Work together in groups and help each other out
- Course staff will circle around to provide support