
CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

Processes
CSE 351 Winter 2024

Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen
Eyoel Gebre
Jiawei Huang
Malak Zaki
Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

https://ptbd.jwels.berlin/comic/20/

https://ptbd.jwels.berlin/comic/20/

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

Relevant Course Information

❖ HW20 due tonight, HW21 due Friday, HW22 due Monday

❖ Lab 4 due Friday

❖ Lab 5 due next Friday, 3/8

▪ Section this week is to get your started with Lab 5

▪ Can use one late day; must be submitted by Sunday, 3/10

❖ Final March 11-13, regrade requests only Monday, March 18

2

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

Winter 2024 Crunch

❖ This quarter is unusually short

▪ Winter is always the shortest of the year for MWF classes due to Monday holidays

▪ This year, we also lost the first Monday due to New Year’s

❖ 29 → 26 lectures compared against 23au

▪ Condensed “x86-64 Programming” from 4 lessons to 3

▪ Cut “Exceptional Control Flow” (related to Processes)

▪ Cutting “C and Java”

❖ Assignments compressed, too

▪ Cut a number of homework questions throughout the quarter

▪ Less time than usual to work on Lab 4 and 5

▪ End topics (Processes, VM) will be stressed less than usual on Final
3

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

4

Processes

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

Lesson Summary (1/4)

❖ A process is an instance of an running program and provides two key
abstractions: logical control flow and private address space

❖ Multiple running processes can be run concurrently via context switching

▪ Parallelism only possible with multiple CPUs/cores

5

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

time

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

Lesson Summary (2/4)

❖ The fork-exec model

▪ Every process is assigned a unique process ID (pid)

▪ Every process has a parent process except for init/system (pid 1)

▪ fork() returns 0 to child, child’s PID to parent

▪ exec() replaces the current process’ code and address space with the code for a
different program

6

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/ls
Data

fork()

Stack

Code: /usr/bin/bash
Data

Heap

Parent Child
exec*()

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

Lesson Summary (3/4)

❖ Terminating a process

▪ Return from main() or explicit call to exit(status)

▪ Passes a status code (main’s return value or exit’s argument) to parent process
• 0 for normal exit, nonzero for abnormal exit

❖ Processes and resources

▪ A terminated (zombie) process still consumes system resources until reaped

▪ Child is reaped when parent process terminates or explicitly calls wait/waitpid

▪ Orphaned children reaped by init/systemd

7

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

Lesson Summary (4/4)

❖ Concurrency and process diagrams

▪ Concurrently executing processes are scheduled non-deterministically by the
operating system

▪ A process graph is a useful tool for capturing the partial ordering of statements in a
concurrent program
• Vertices are program statements, directed edges capture sequencing within a process

• Flexible visualization tool:

8

printf--x printffork

Child

Byex=1

printf printf++x

Bye

Parent

x=2

x=0

printf wait printffork

printf

exit

HP

HC

CT
Bye

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

Lesson Q&A

❖ Learning Objectives:

▪ Define the process abstraction and the role of context switching in enabling
concurrency.

▪ Design process graphs to determine potential orderings of concurrent execution.

❖ What lingering questions do you have from the lesson?

▪ Chat with your neighbors about the lesson for a few minutes to come up with
questions

9

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

10

Processes – Practice

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

Polling Questions (1/2)

❖ Are the following sequences of outputs possible?

11

void nestedfork() {
printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

Seq 2:
L0
Bye
L1
L2
Bye
Bye

Seq 1:
L0
L1
Bye
Bye
Bye
L2

A. No No
B. No Yes
C. Yes No
D. Yes Yes
E. We’re lost…

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

Polling Questions (2/2)

❖ For the following scenarios, what will the outcome be for a child process
that executes exit(0):

12

Scenario Outcome for child

Parent is still executing: Alive Reaped Zombie

Parent has called wait(): Alive Reaped Zombie

Parent has terminated: Alive Reaped Zombie

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

13

Processes – Context

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

Processes Demos

❖ How many processes are running on my computer right now?

❖ In Linux, the ps utility gives a snapshot of currently-running processes
and pstree formats these as a tree

▪ Can run man ps and man pstree for more info

▪ Let’s see a simple pstree

▪ Let’s check attu for some 351 zombie processes

14

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

❖ Topic Group 3: Scale & Coherence

▪ Caches, Memory Allocation, Processes,
Virtual Memory

❖ How do we maintain logical consistency in
the face of more data and more processes?

▪ How do we support control flow both within
many processes and things external to the
computer?

▪ How do we support data access, including
dynamic requests, across multiple processes?

The Hardware/Software Interface

15

⋮

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

⋮

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

The Operating System

❖ “The OS is everything you don’t need to write in order to run your
application”

❖ This depiction invites you to think of the OS as a library

▪ In some ways, it is:
• All operations on I/O devices require OS calls (syscalls – traps)

▪ In other ways, it isn't:
• You use the CPU/memory without OS calls

• It intervenes without having been explicitly called
16

Applications

OS

Hardware

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

Operating System Structure

❖ The OS sits between application programs (P for processes) and the
hardware (D for devices)

▪ It mediates access (sharing and protection)
• Programs request services via traps or exceptions; devices request attention via interrupts

▪ It abstracts away hardware into logical resources and well-defined interfaces to
those resources (ease of use)
• e.g., processes (CPU, memory), files (disk), programs (sequences of instructions), sockets

(network)

17

OS

P1
P2 P3

P4

D1
D2 D3

D4

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

OS Relevance in 351

❖ From programmer’s perspective, the application benefits include:
▪ Programming simplicity

• Can deal with high-level abstractions instead of low-level hardware details

• Abstractions are reusable across many programs

▪ Portability (across machine configurations or architectures)
• Device independence: 3com card or Intel card?

❖ Want to learn more?
▪ CSE 333 will cover the application interface with the OS via system calls

▪ CSE 451 will have you implementing the complex details of an operating system

18

CSE351V00: IntroductionL22: Processes CSE351, Winter 2024

Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the homework problems

3) Work on the lab (if applicable)

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support

19

