CSE351, Winter 2024

Virtual Memory I CSE 351 Winter 2024

Instructor:

Justin Hsia

Teaching Assistants:

Adithi Raghavan Aman Mohammed Connie Chen Eyoel Gebre Jiawei Huang Malak Zaki Naama Amiel Nathan Khuat Nikolas McNamee Pedro Amarante Will Robertson

PRETENDS TO BE DRAWING | PTBD.JWELS.BERLIN

https://ptbd.jwels.berlin/comic/21/

Relevant Course Information

- HW21 due tonight, HW22 due Monday, HW23 due Wednesday
- Lab 4 due tonight
- Lab 5 due next Friday (3/8)
 - The most significant amount of C programming you will do in this class combines lots of topics from this class: pointers, bit manipulation, structs, examining memory
 - Understanding the concepts *first* and efficient *debugging* will save you lots of time
 - Light style grading
 - Only 1 late day can be used for Lab 5
- No lessons for Lectures 25 and 26 "normal" lectures

Take-Home Final Exam

- First three days of Finals Week (3/11-13)
 - Structure will be very similar to the midterm
 - Not cumulative: focused on post-midterm material
 - Hybrid final review session planned for 3/8 (room TBD)
 - Justin will hold virtual support hours on 3/12 and 3/13
 - Regrade requests Monday, 3/18

Lesson Summary (1/2)

- Virtual memory is software's perspective (e.g., memory layout),
 physical memory is hardware's perspective (e.g., memory hierarchy)
- Virtual memory manages the memory for multiple concurrently running processes (implements *protection* and *sharing*)
 - Each process has its own virtual address space that gets mapped into parts of the physical address space
 - When run out of physical address space, put least recently used data in disk

Lesson Summary (2/2)

- Can think of physical memory as a cache of virtual memory
 - Data is transferred between physical memory and swap space (disk) in pages
 - Physical memory has caching parameters and properties
 - Large page size, fully associative, write-back, replacement policy
 - Caveats: virtual pages may not exist, data doesn't have to exist in both physical memory and disk

Lesson Q&A

- Learning Objectives:
 - Explain the benefits behind why virtual memory is used instead of only physical memory address space.
 - Describe the relationships between virtual memory parameters and policies.
- What lingering questions do you have from the lesson?
 - Chat with your neighbors about the lesson for a few minutes to come up with questions

Polling Questions (1/2)

On a 64-bit machine currently running 8 processes, how much virtual memory is currently available?

True or False: A 32-bit machine with 8 GiB of RAM installed would never use all of it (in theory).

Polling Questions (2/2)

- * How many bits wide are the following fields?
 - 16 KiB pages
 - 48-bit virtual addresses
 - 16 GiB physical memory

	VPN	PPN
(A)	34	24
(B)	32	18
(C)	30	20
(D)	34	20

Group Work Time

- During this time, you are encouraged to work on the following:
 - 1) If desired, continue your discussion
 - 2) Work on the homework problems
 - 3) Work on the lab (if applicable)
- Resources:
 - You can revisit the lesson material
 - Work together in groups and help each other out
 - Course staff will circle around to provide support