
CSE 352 Laboratory Assignment 2

Constructing Simple Logic Circuits - II

Assigned: October 11/13

Due: End of Lab Section

Objectives

In this laboratory assignment you will continue to learn how to use the Aldec Active-HDL tool.

This time the focus will be on how to create Verilog modules. You will also see how Verilog

modules can be used as test fixtures to help you verify your circuit's behavior. By the end of this

lab you should feel comfortable creating a Verilog module directly and setting up a test fixture.

Save all the files that you create in this lab. We will use them later.

Tasks

1. Complete Tutorial #2 to familiarize yourself with test fixtures and how to use them to test

a circuit in Active-HDL. The second part of the tutorial describes how to use buses and

bus input and output terminals. In this part, you will design four-bit adder using the one-

bit full adders you created in Lab 1. Test your four-bit adder using this test fixture:

addsub4_tf.v as described in the Tutorial.

Note that in Tutorial #2 the four-bit adder is made with the pink lib370 gates. These

gates model delay, unlike the built-in yellow gates. Make sure you use the lib370 gates

or you will not be able to answer the check-off question.

 (You may skip the optional section at the end of the tutorial.)

2. Complete Tutorial #3 which describes how to write simple Verilog modules and use them

in schematics. As part of the tutorial, you will write and test the Verilog module for a

full-adder; a full adder is one that handles both carry-in and carry-out conditions in

addition to the sums and two inputs. You should create a test schematic by using the

provided test fixture: FA_tf.v (right click and "save as" if the download doesn‟t start

automatically). Test fixtures will be covered in more detail later so don‟t worry too much

about how it works. However the basic premise is the test fixture generates input signals

for the circuit and checks to see if the output signals have the correct values. An example

of how to hook up your test fixture is shown below.

http://www.cs.washington.edu/lab/facilities/hwlab/tutorials/Active-HDL%20Tutorial%202%20-%20Hierarchical%20Designs%20and%20Test%20Fixtures.pdf
http://www.cs.washington.edu/lab/facilities/hwlab/tutorials/support_files/addsub4_tf.v
http://www.cs.washington.edu/lab/facilities/hwlab/tutorials/Active-HDL%20Tutorial%203%20-%20Introduction%20to%20Verilog%20Using%20Active-HDL.pdf
http://www.cs.washington.edu/lab/facilities/hwlab/tutorials/support_files/FA_tf.v

Figure 1 - Hooking up a Test Fixture

To test to see if your full adder works you do not have to manually create signals and

simulate it in Active-HDL; the test fixture generates all the signals for you. All you need

to do is run the simulation and the test fixture will pass a series of values in to your full

adder and check the results. If all goes well the console at the bottom will inform you that

your full adder passed. If there are errors it will let you know as well.

Warning: Do not put complete faith in test fixtures. You should always practice

common sense and make sure that the values that come out make sense. Text fixtures

cannot possibly test all cases for complex circuits, but they do increase you confidence

that the circuit works correctly. Also, you may see „X‟ values, which are a good

indication that something is not working correctly.

3. [Optional/Extra Credit] Replace the schematic-based full-adder in the 4-bit adder of Part

1 with the Verilog full-adder you made in Part 2. Test your circuit in simulation using

the same addsub4_tf.v test fixture.

4. Construct an 8-1 multiplexer on your breadboard using two 4-1 multiplexers (the „153

chip) and one 2-1 multiplexer (the „157 chip). (You may use 4 2-1 and one 4-1

multiplexer if you like.) Wire the 8 inputs of your multiplexer to the first 8 switches, and

wire the 3 select signals to first three keys. You should of course wire the 0 input to

switch 0, etc., if you want to stay sane. Connect the output of your 8-1 multiplexer to one

of the LEDs. Don‟t forget to connect Vdd and GND to the chips.

Test your multiplexer by going through the inputs one at a time. Press the appropriate

keys and make sure that the output follows the inputs. For example, with keys 0 and 1

ON, switching SW 3 should make the light blink, and switching any other switch should

have no effect. (Recall from Lab 1 how the switches work – you may want to use

inverters on the switch outputs.)

5. You have now implemented a circuit that can implement any function of 3 inputs. The

idea that we can build a circuit that can be “reconfigured” to implement any function is

huge: it‟s the basic idea that FPGAs are built from. The 3 select inputs of the 8-1

multiplexer are the inputs to your reconfigurable function, and you “configure” the

http://www.cs.washington.edu/lab/facilities/hwlab/tutorials/support_files/addsub4_tf.v

function that it implements by setting the 8 switches to on or off according to the

function‟s truth table.

Start by implementing a 3-input AND gate: test by trying all combinations of the 3

inputs. Now reconfigure your circuit to implement the full-adder carry function. Finally,

reconfigure your circuit to implement a 2-1 multiplexer. Use input 0 and 1 as the 0 and 1

inputs of the 2-1 multiplexer and input 2 as the select input of the 2-1 multiplexer.

(Using an 8-1 multiplexer to implement a 2-1 multiplexer may sound weird, but

remember, it‟s not an 8-1 multiplexer any more, it‟s a reconfigurable 3-input function.)

Lab Demonstration/Turn-In Requirements

A TA needs to "Check You Off" for each of the tasks listed below.

1. Demonstrate your 4-bit adder design from Part 1 working in simulation. Look at the

waveform of your simulation and determine the maximum delay of your adder.

2. Demonstrate your Verilog full adder design from Part 2 working in simulation.

3. [Optional/Extra Credit] Demonstrate your 4-bit full adder design from Part 3 working in

simulation.

4. Demonstrate your reconfigurable 3-input function implementing the AND, Carry and 2-1

multiplexer functions.

Comments to:cse352-webmaster@cs.washington.edu

mailto:cse352-webmaster@cs.washington.edu

