
CSE 352 Laboratory Assignment 4

Designs in FPGAs (Field Programmable Gate Arrays)

Assigned: Oct. 25
Due: Beginning of next lab

Read the entire lab assignment carefully before you begin working on it!

Objectives

In this laboratory assignment you will design and implement an 8-bit accumulator using the
FPGA on your board instead of discrete chips. The accumulator is a register which can be
cleared to 0 and to which values can be added. The values to be added will be entered using the
switches and the value in the accumulator will be shown using the 7-segment displays. The lab
assignment will guide you through the design of the components of this circuit; however it will
be your job to figure out how to put them together properly and make it work on the FPGA.

Compling and Downloading Circuits to the FPGA

You will to first learn how to run the Quartus synthesis tool from Altera to compiler your
hardware design to a file that can be downloaded and run on the FPGA. Work through this
FPGA synthesis tutorial to (or this more recent FPGA synthesis tutorial) learn how this is done.
You can reuse the schematics you did for Tutorials 1 and 2, but will have to use the builtin
yellow gates instead of the lib370 pink gates in order compile to the FPGA. You will doing
this compilation many times during the rest of the course, so you might as well take your time
and understand how it works.

Designing with Verilog

In this lab, you will be combining schematics and Verilog modules to build a relatively complex
design. Describing this design just with schematics would be tedious. Using Verilog will allow
us to design and debug much more complex designs than if we had to use schematics for
everything.

You will be using a subset of Verilog for this lab which uses only assign statements to describe
logic functions and posedge clock blocks for the register. Remember that Verilog is a hardware
description language. Although it may look like a programming language, Verilog is used to
describe what the hardware does. Verilog programs don’t actually get executed by the hardware
like C or Java; instead, they are turned into the hardware circuit described by the Verilog. Your
design will be comprised of several modules that will be connected together using schematics in

http://www.cs.washington.edu/lab/facilities/hwlab/tutorials/FPGA_Tut/FPGA_Tut.html
http://www.cs.washington.edu/lab/facilities/hwlab/tutorials/Active-HDL_Tutorial_4-Synthesizing_onto_an_FPGA.pdf
http://www.cs.washington.edu/lab/facilities/hwlab/tutorials/ActiveHDL/AHDL_Tutorial_4.pdf

Aldec-HDL. You can refer to Chapter 4.2 of the textbook for a review of using Verilog to
describe combinational circuits.

Before You Begin

It is strongly suggested that you create a NEW design in your workspace called “lab4”. Making
a new design will make debugging easier and reduce the chance for errors.

1. Start with a Hexadecimal Display

We will use the 7-segment displays on the board to display the accumulator value as a
hexadecimal number. Your first task is to write an “encoder” in Verilog to display a 4-bit binary
value using a 7-segment display. If you look to the left side of the board above LEDR5-9 you
should see 4 hexadecimal displays labeled HEX0, HEX1, HEX2, and HEX3. They are called
HEX because they are generally used to display the hexadecimal values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, b, C, d, E, F for a 4-bit number. For example, the binary value 0001 would be displayed as 1,
and the binary value 1111 would F.

This requires turning on the appropriate segments for each hex value. The 7 segments in a
hexadecimal display can be turned on and off independently using the 7 inputs to the display. A
high value (1) to a segment it turns off, and a low value (0) it turns on. (NOTE THE
INVERSION!). Finally you need to know how the 7 segments in the display are numbered; you
can go to page 30 and 31 of the DE1 Board Documentation. There is a nice figure that shows
how the 7-segments in the display are numbered (Figure 4.7). (You will need to get used to
using documentation to find important information about the parts you are working with.)

You can now design a module that converts a 4-bit input value to a 7-bit output value that drives
the 7-segment hexadecimal display. There are many ways to describe this in Verilog. You could
describe each of the 7 outputs as a separate function of the 4 inputs. Or you can treat the 7
outputs as a 7-bit bus and assign all bits in parallel, e.g.

assign segments[6:0] = 7’b0110000;

Of course the output value depends on the input value. Recall that we use the ? operator in
Verilog to implement conditionals. For example, the following statement assigns one of two
values to the 7 segments depending on the value of in.

assign segments[6:0] = in == 0 ? 7’b1111110 : 7’b0110000;

Here is an example Verilog file that implements a full adder using assign statements and
conditional operators. You can look in the textbook Chapter 4.2 to get more information on using
Verilog for combinational logic. You should use the following module declaration for your hex
display module:

http://www.terasic.com.tw/attachment/archive/83/DE1_UserManual_v1018.pdf
http://www.cs.washington.edu/education/courses/cse352/11au/labs/lab4/example.v
http://www.cs.washington.edu/education/courses/cse352/12sp/labs/lab4/example.v

module toHex (

 output [6:0] segments,

 input [3:0] number);

 <Your Verilog code goes here>

endmodule

After you have written your Verilog for this module, you should first test it in Active-HDL using
the toHex_tf.v test fixture. Once you get that to work, you can compile your design to the
FPGA. The first step will be to describe to the Quartus compiler how your signals are connected
to the pins of the FPGA – this is done using the .qsf file. You should connect the four inputs of
your module to the SW0-3 and 7 outputs to HEX0:0-6.

Now you can compile your design and load it onto the FPGA. After you have downloaded it, test
your 4-bit to HEX encoder to make sure it works by going through all the values 0-15 to make
sure the HEX displays the correct value.

2. Add a Register

In this part, you will add an 8-bit register (with reset) to your design. Use the following module
declaration for this:

module reg8 (

 input clk, reset,

 input [7:0] D,

 output reg [7:0] Q);

 <Your Verilog code goes here>

endmodule

Add this register module to your top-level schematic, connecting the inputs of the register to 8
switches (SW0-7). You will also need inputs for the clock and reset signals – use KEY0 for
clock (like you did for Lab 3) and SW8 for reset. Connect the 8-bit input of your register to two
hex displays (HEX0/1), and the 8-bit output of your register to the other two hex displays
(HEX2/3). Your top-level block diagram should now instantiate the register and the four hex
encoders, and provide the input and output ports for the switches and displays.

Now you need to write a pin assignment file (.qsf) for all of your inputs and outputs. When that
is completed, synthesize and implement your design onto the FPGA. Test to make sure that it is
working correctly. Does the value of the switches display on the HEX display? Does the value
saved inside the accumulator show on the HEX display as well? When you feel it is all working
call over your TA for the first check-off.

http://www.cs.washington.edu/education/courses/cse352/11au/labs/lab4/toHex_tf.v
http://www.cs.washington.edu/education/courses/cse352/12sp/labs/lab4/toHex_tf.v

3. Turn it into an Accumulator

Your next task is to turn your register into an accumulator by adding an 8-bit adder/subtractor
module (call it “alu”) to your design. The 8-bit adder/subtractor module has two 8-bit inputs,
A[7:0] and B[7:0], a 1-bit control signal that specifies whether the module should add or
subtract, and an 8-bit Sum[7:0] result of the add or subtract. Write this 8-bit adder/subtractor
module using Verilog. You should use the built-in Verilog add (+) and subtract (-) operators and
let the synthesis tool turn into an adder circuit.

Once you have finished the alu module, add it to your schematic so that it adds/subtracts the
input value to the output of the register to compute the next value for the register. Synthesize
your new circuit and download it to the FPGA, test it to make sure it works, and then have the
TA check you off.

4. Extra Credit

You have just designed an 8-bit binary accumulator whose value is displayed as 2 hexadecimal
“digits”. For extra credit, change the accumulator to be a 2-digit decimal accumulator. For this
circuit, the input and output are 2 4-bit decimal digits. That is, the values A-F are illegal on the
input digits and cannot appear on the output digits. Thus if the accumulator value is 86 and we
add the number 45, we will get 31 as the next result (with a lost carry), not the hex value “cb”.

Lab Demonstration/Turn-In Requirements

You will need to be checked off for the following three demos:

1. Demo your working Hex encoder.
2. Demo your working 8-bit register.
3. Demo your working accumulator circuit.

