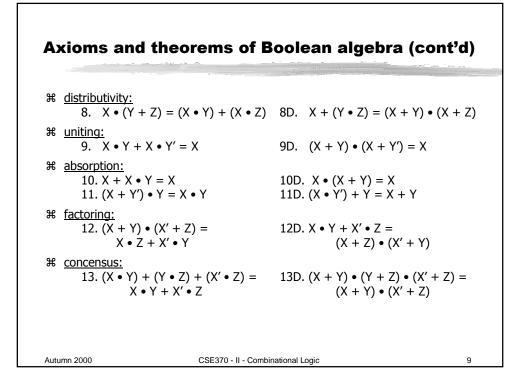
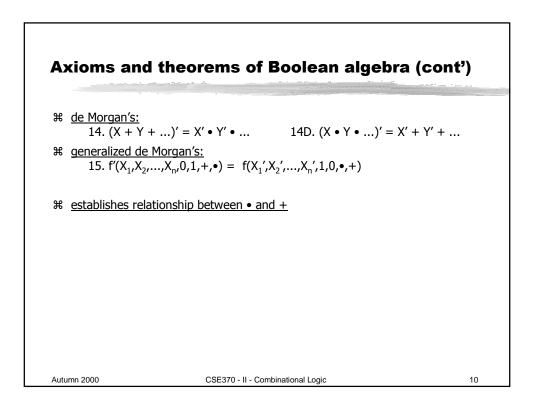
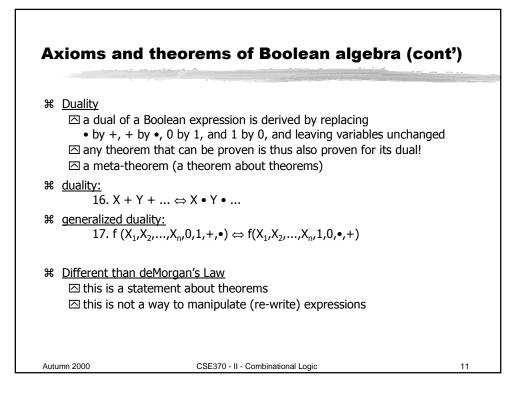


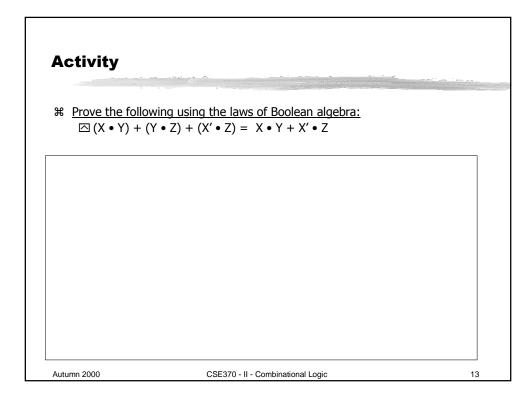
Axioms and theorem	s of Boolean algebra	
ж <u>identity</u>		
1. X + 0 = X	1D. $X \bullet 1 = X$	
೫ <u>null</u> 2. X + 1 = 1	2D. $X \bullet 0 = 0$	
$\frac{\text{idempotency:}}{3. X + X} = X$	3D. X • X = X	
$\frac{\text{involution:}}{4. (X')' = X}$		
$\begin{array}{c} \text{$\stackrel{\textbf{i}}{\texttt{complementarity:}}}\\ \text{$\stackrel{\textbf{j}}{\texttt{5.}} X + X' = 1 \end{array}$	5D. $X \bullet X' = 0$	
$\begin{array}{l} \text{ $\stackrel{\texttt{COMMUTATIVITY:}}{$6.$ $X+Y=Y+X$} \end{array}$	6D. $X \bullet Y = Y \bullet X$	
$\frac{\text{associativity:}}{7. (X + Y) + Z = X + (Y + Y)}$	+ Z) 7D. $(X \bullet Y) \bullet Z = X \bullet (Y \bullet Z)$	
. ,	,	
Aut.ma 2000 00500		0
Autumn 2000 CSE37	70 - II - Combinational Logic	8

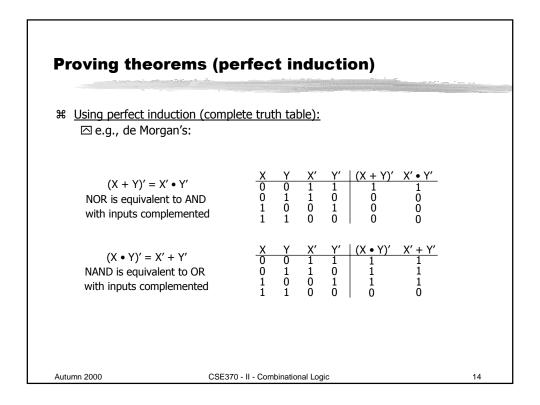


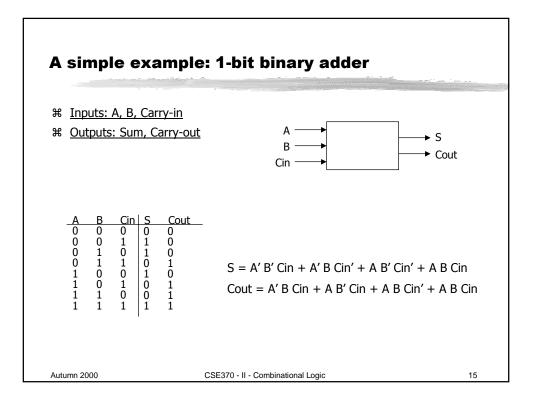


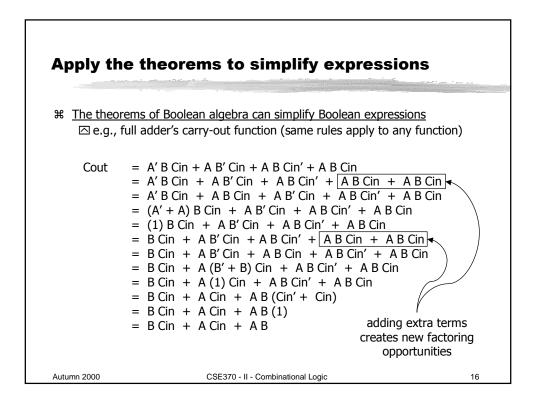


Proving theorems (re	ewriting)			
 ^ℋ Using the axioms of Boolean [™] e.g., prove the theorem: 		=	x	
	$X \bullet Y + X \bullet Y'$ $X \bullet (Y + Y')$ $X \bullet (1)$	=	X•(1)	
☐ e.g., prove the theorem:	X + X • Y	=	x	
identity (1D) distributivity (8) identity (2) identity (1D)	$X + X \bullet Y$ $X \bullet 1 + X \bullet Y$ $X \bullet (1 + Y)$ $X \bullet (1)$	= =	$X \bullet (1 + Y) X \bullet (1)$	
Autumn 2000 CSE3	370 - II - Combinational Logic			12

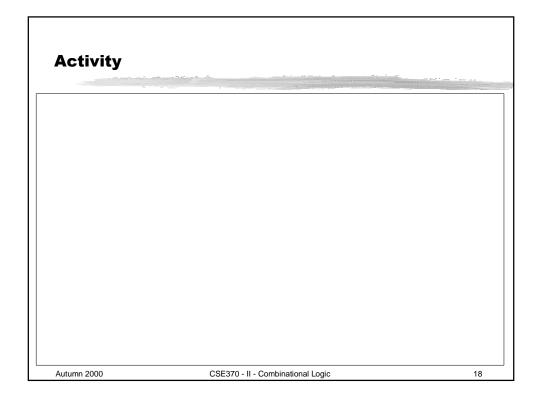


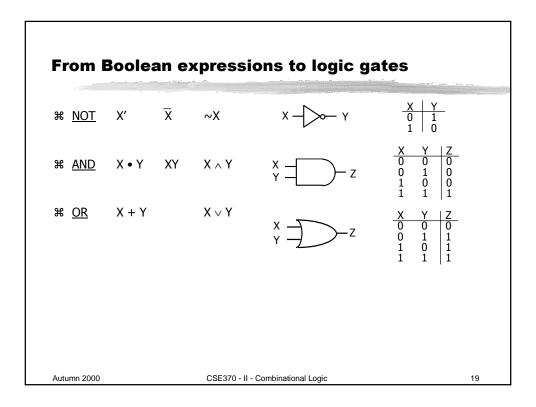


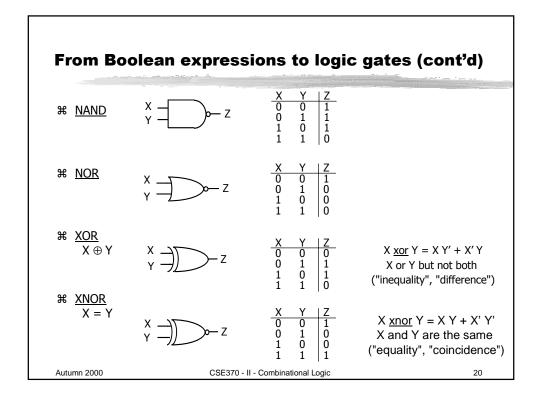


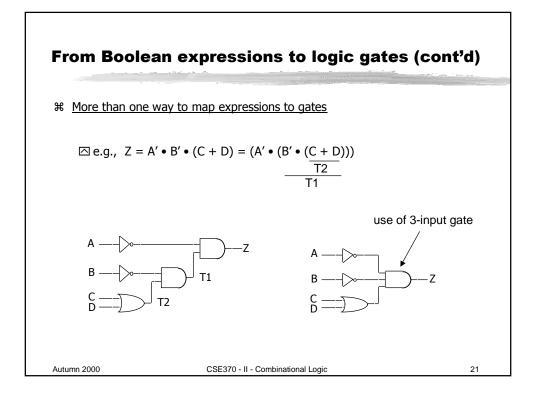


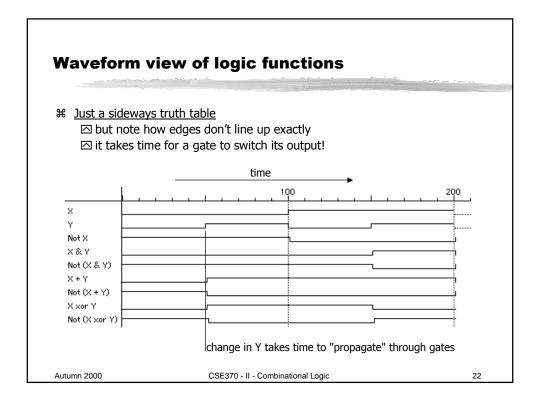
Activi ೫ <u>Fill in</u>		1-table fo	r a circuit	that che	cks that a	4-bit nui	mber is div	<u>visible</u>
<u>by 2,</u>	<u>3, or 5</u> <u>8</u> 0 0 0 0	X4 0 0 0 0	X2 0 1 1	X1 0 1 0 1	By2 1 0 1 0	By3 1 0 0 1	By5 1 0 0 0	
ж <u>Write</u>	e down Bo	oolean ex	pressions	for By2,	By3, and	<u>By5</u>		
Autumn 2000				II - Combinati				17

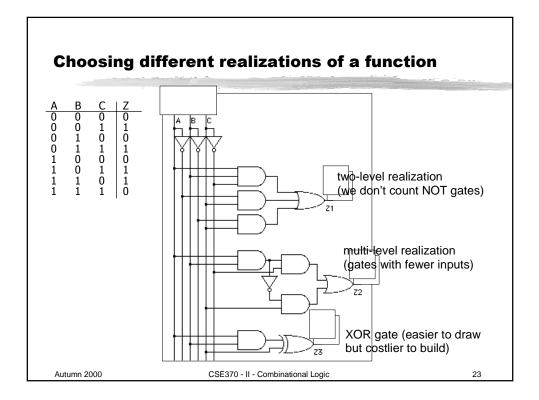


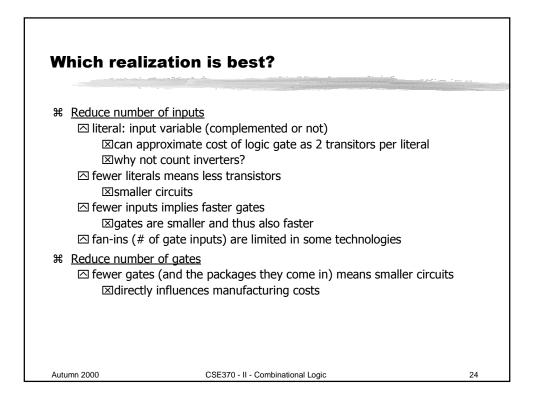


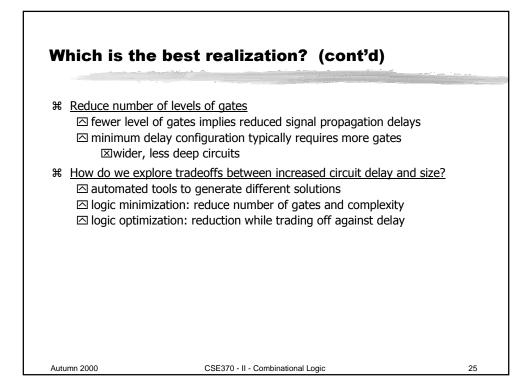


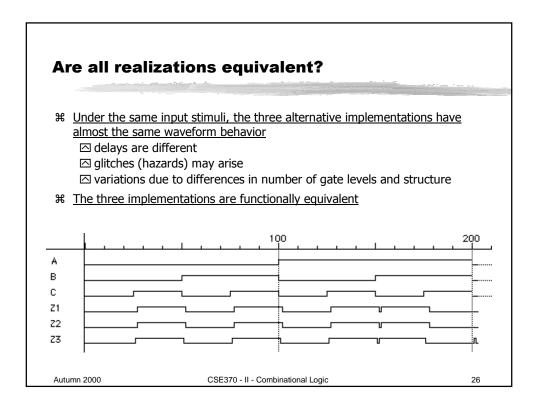


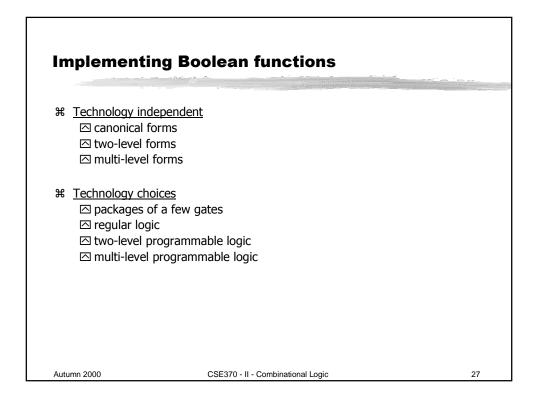


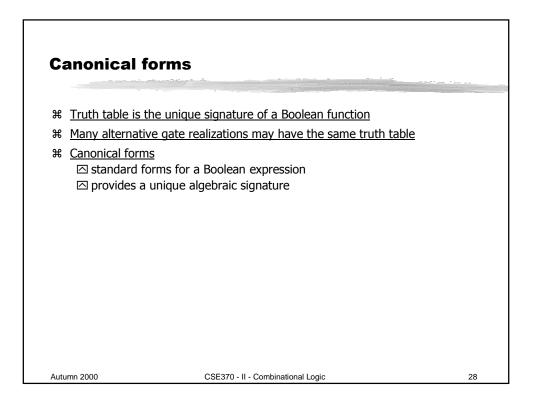


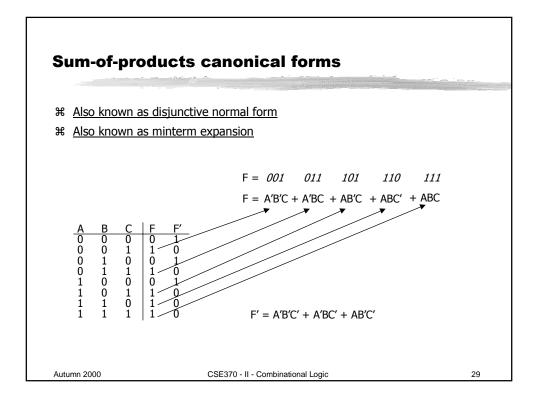


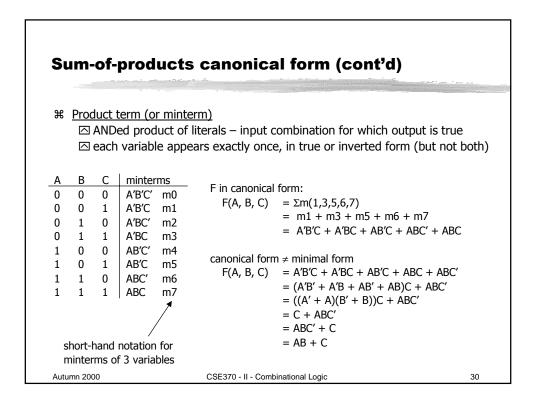


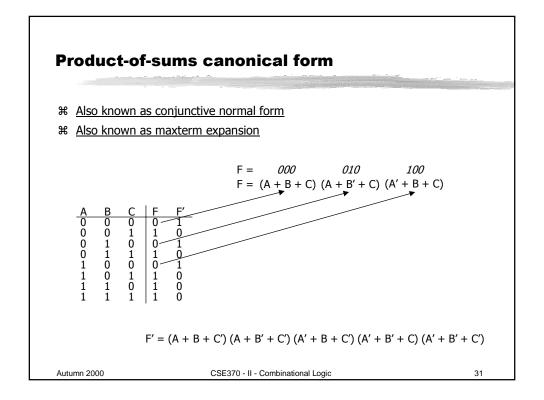


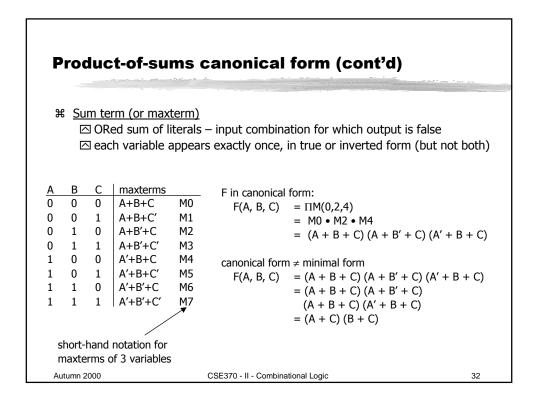


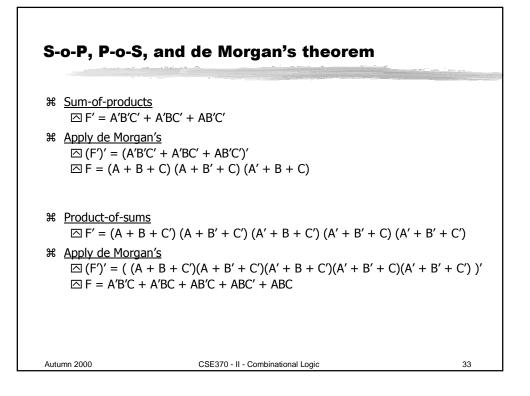


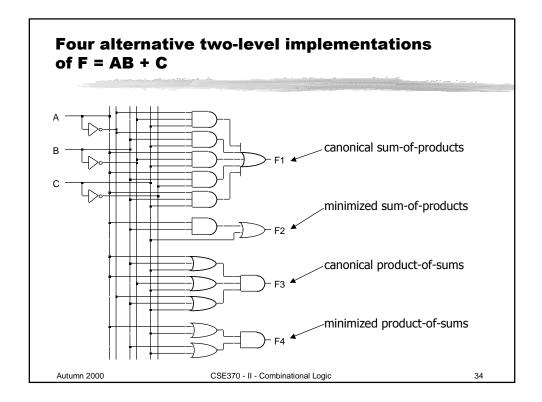


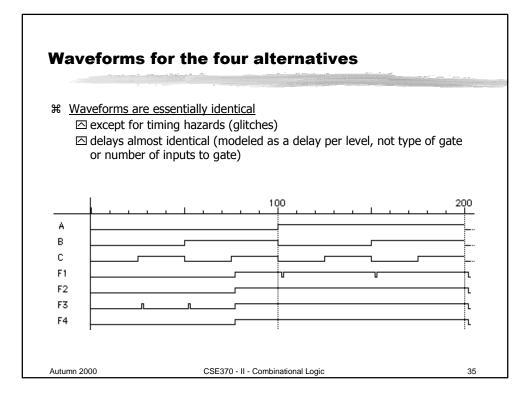


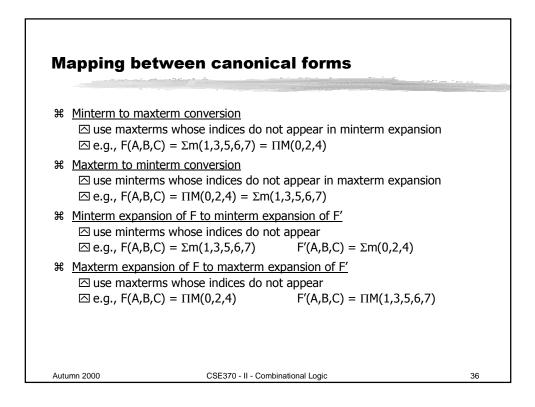


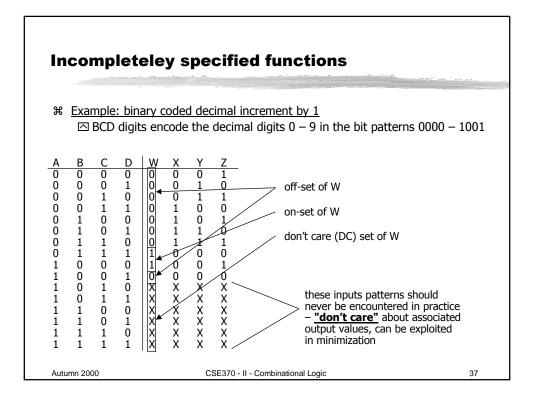


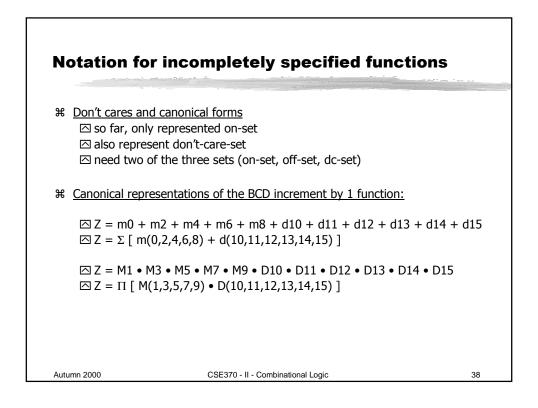


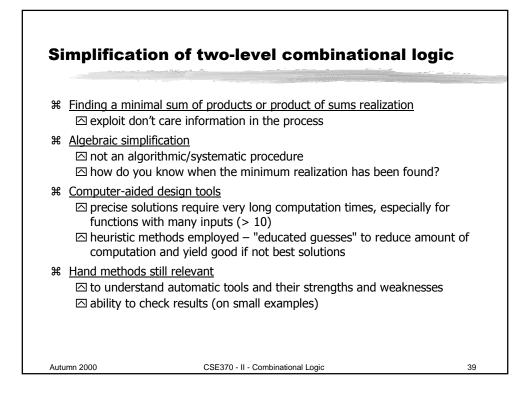


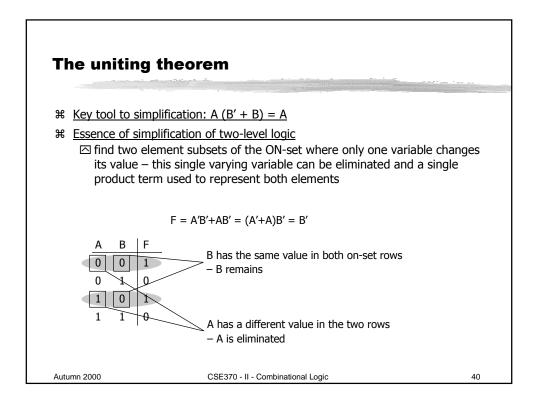


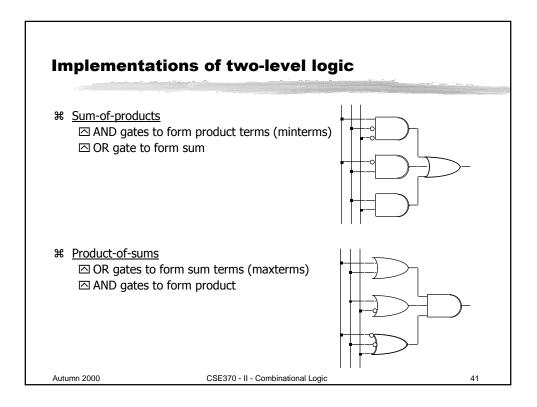


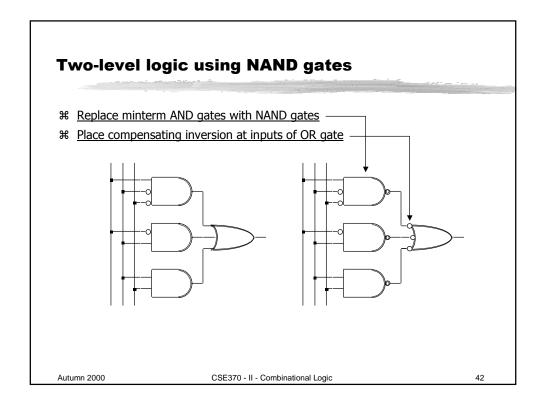


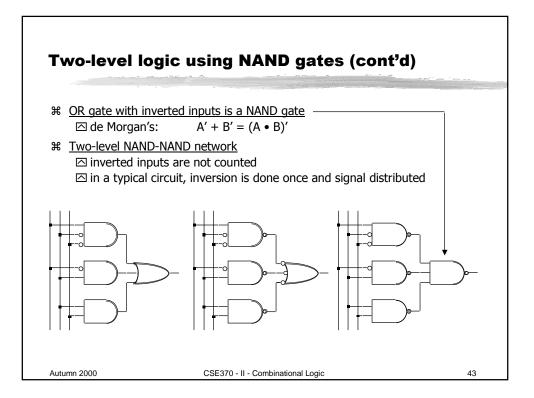


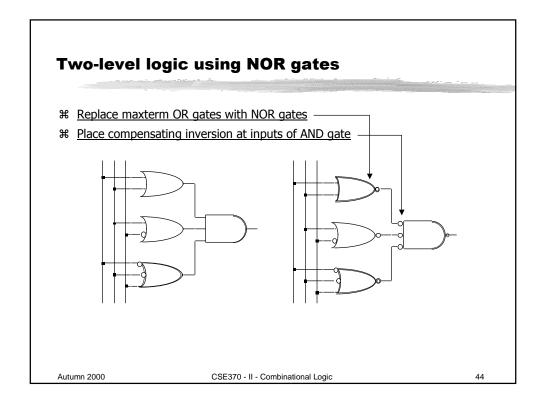


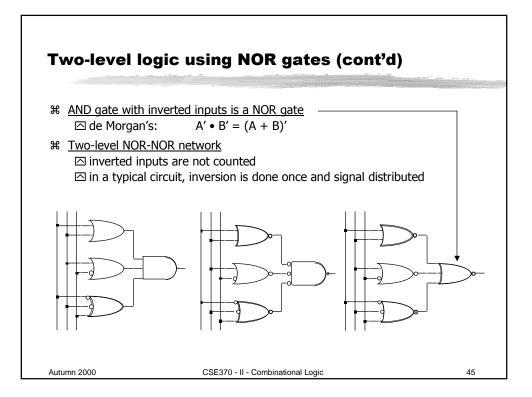


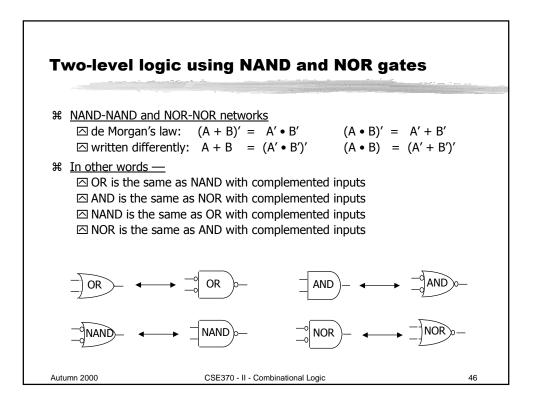


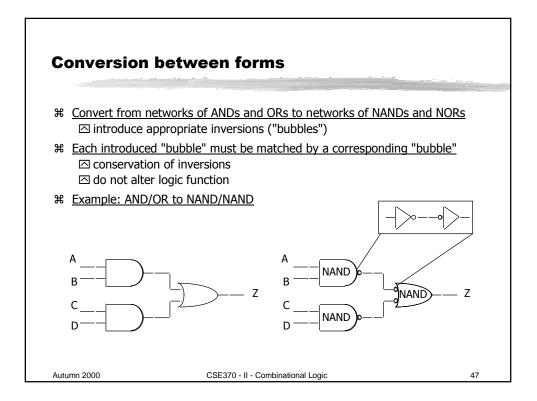


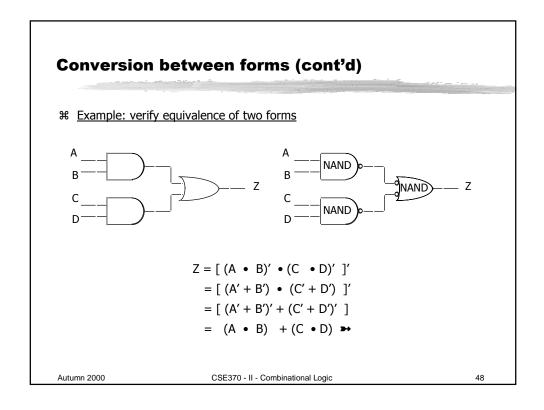


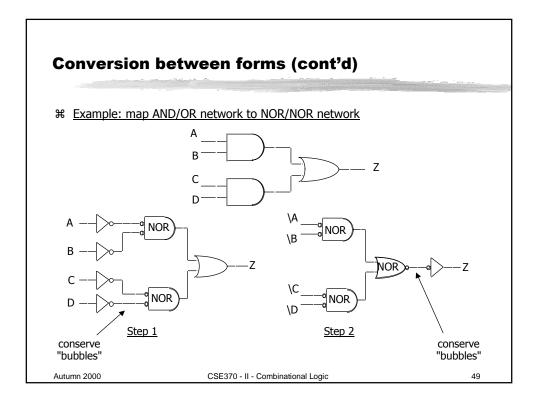


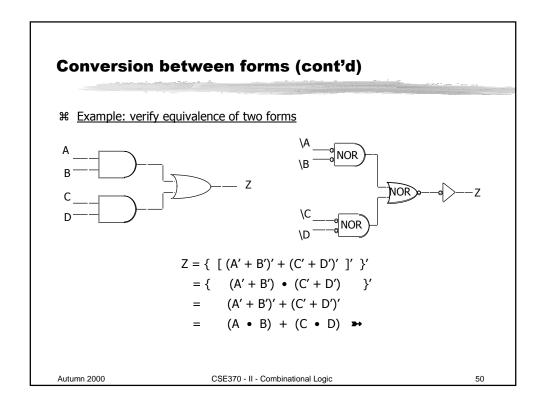


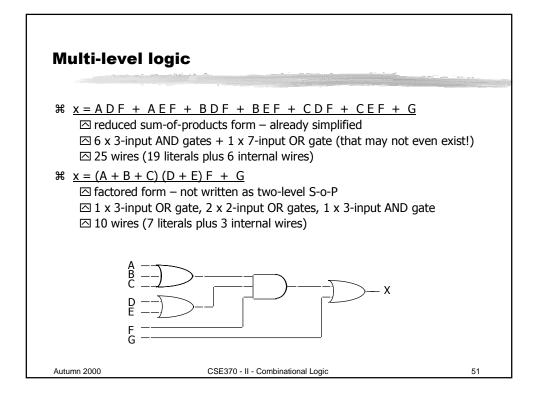


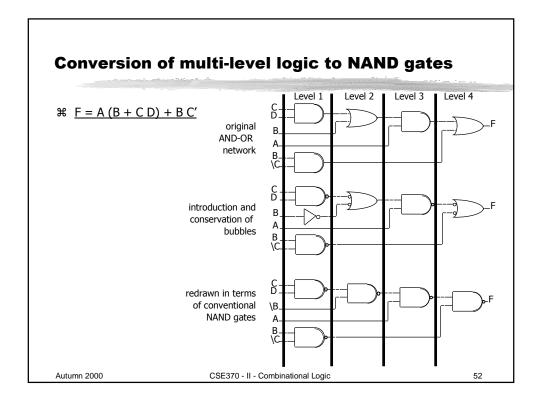


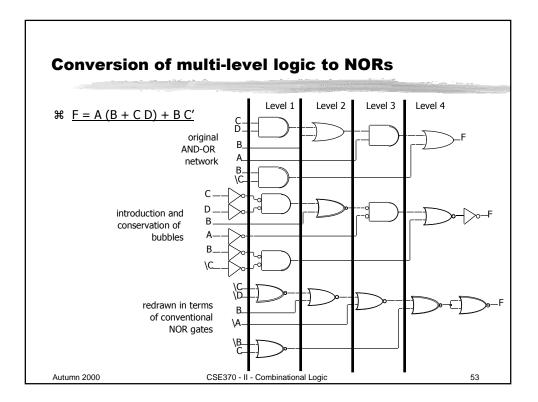


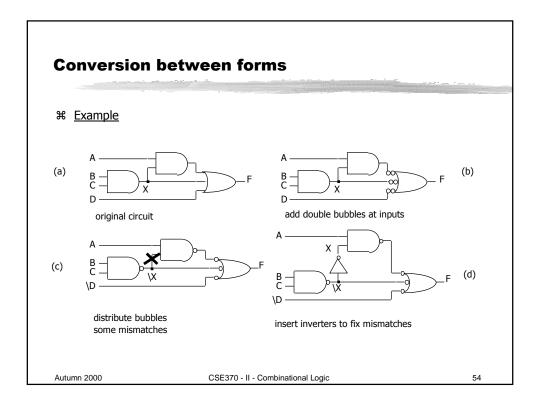


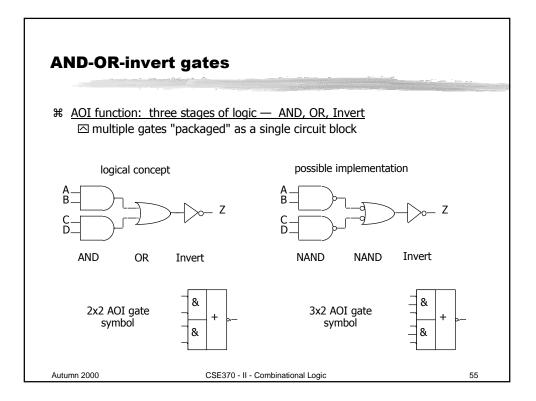


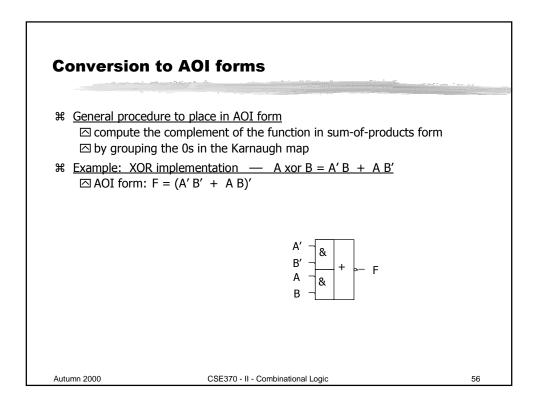


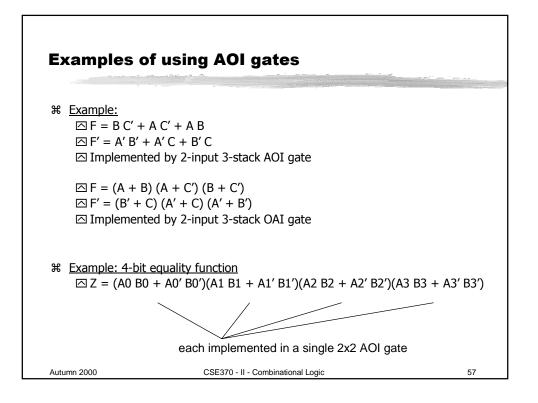


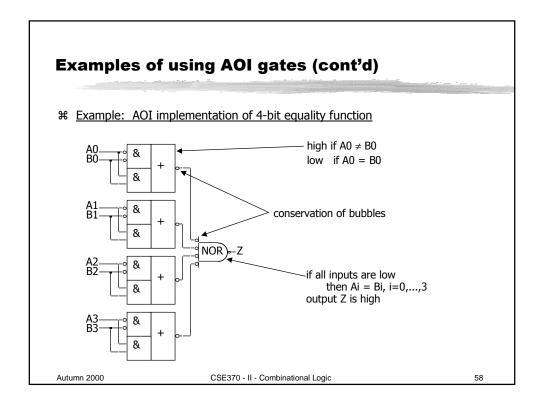


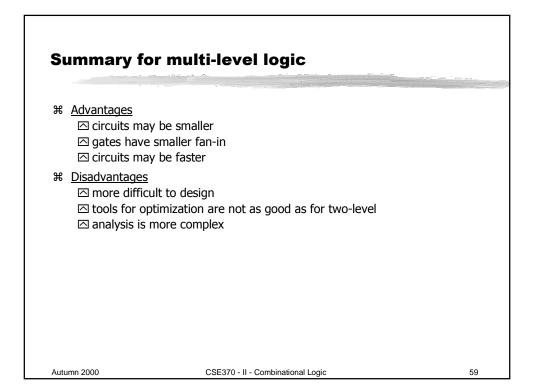


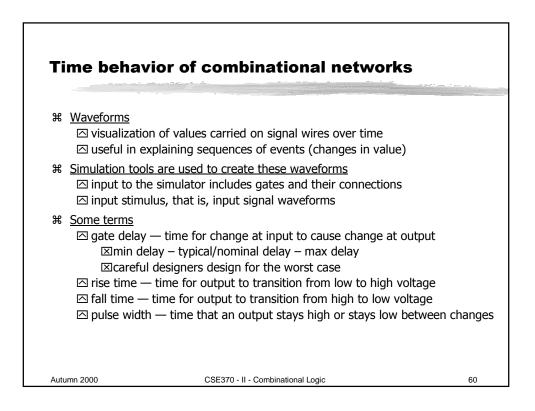


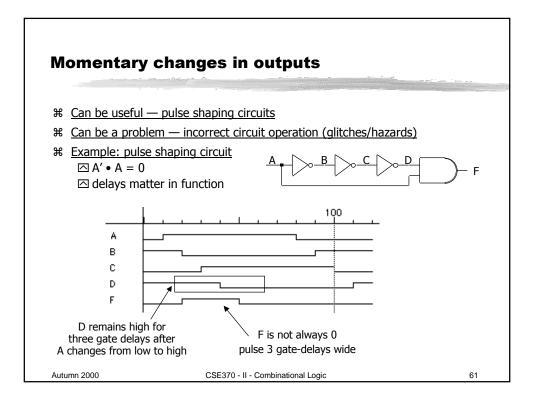


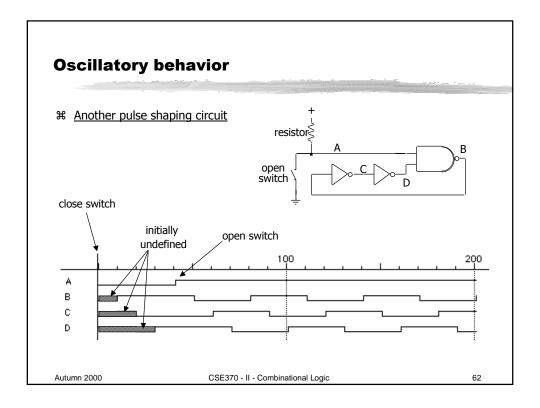


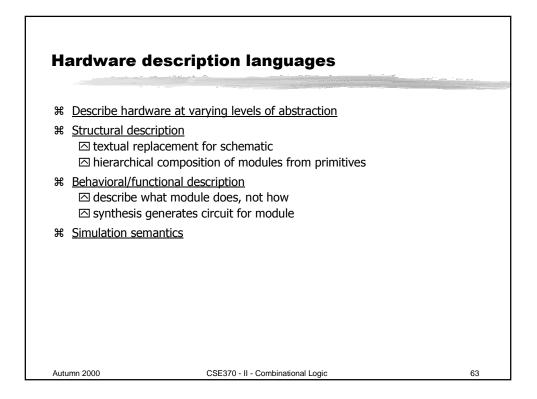




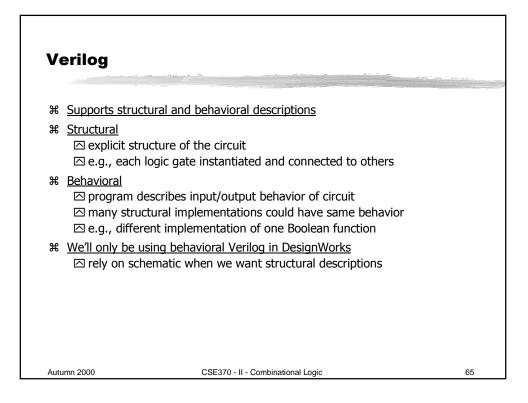




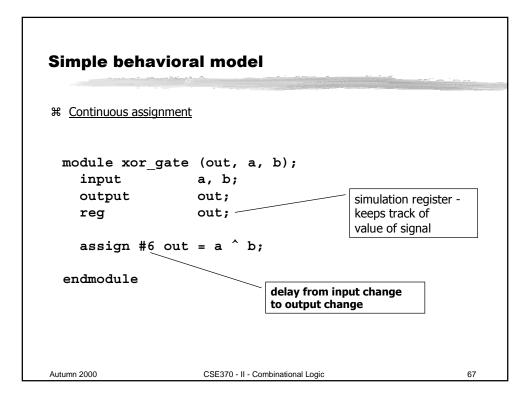


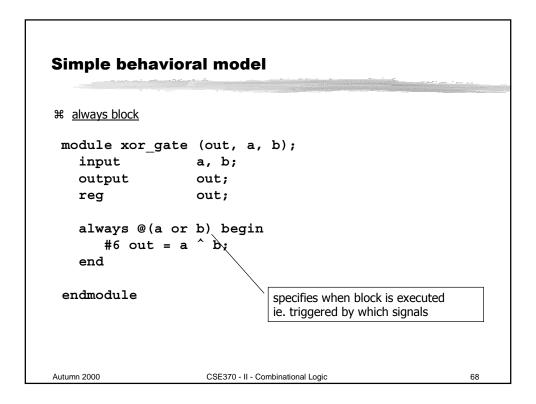


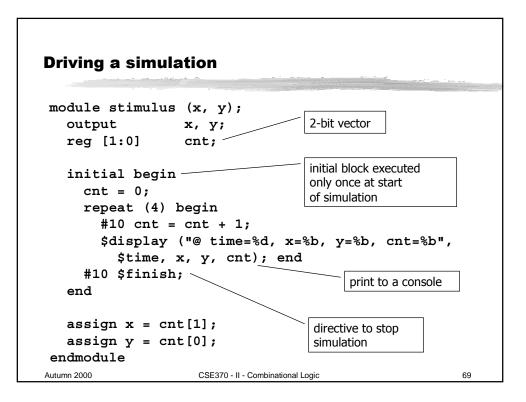
HI	DLs		
Ħ	⊡ targeted to	<u>3) - developed by Data-I/O</u> programmable logic devices r much more than state machines	
ж) - <u>research project at CMU</u> but no synthesis	
ж	☐ similar to Pa ☐ delays is on	ly interaction with simulator nt and easy to write	<u>ice)</u>
ж	⊡ similar to A		
Auti	ımn 2000	CSE370 - II - Combinational Logic	64

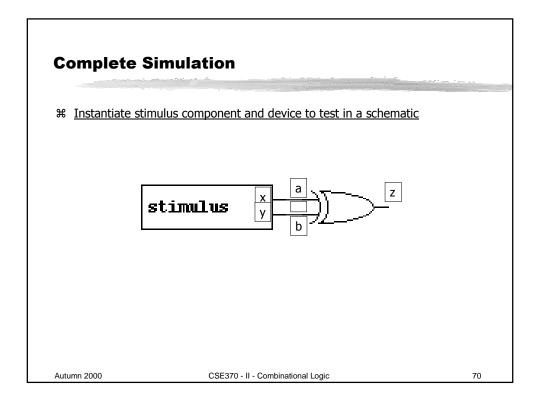


Structural mo	Structural model					
input output						
inverter and_gate and_gate	<pre>invA (abar, a); invB (bbar, b); and1 (t1, a, bbar); and2 (t2, b, abar); or1 (out, t1, t2);</pre>					
endmodule						
Autumn 2000	CSE370 - II - Combinational Logic	66				









Comparator Example

```
module Compare1 (A, B, Equal, Alarger, Blarger);
input A, B;
output Equal, Alarger, Blarger;
assign #5 Equal = (A & B) | (~A & ~B);
assign #3 Alarger = (A & ~B);
assign #3 Blarger = (~A & B);
endmodule
```

Autumn 2000

CSE370 - II - Combinational Logic

```
71
```

```
More Complex Behavioral Model
module life (n0, n1, n2, n3, n4, n5, n6, n7, self, out);
          n0, n1, n2, n3, n4, n5, n6, n7, self;
  input
          out;
  output
            out;
  reg
  reg [7:0] neighbors;
  reg [3:0] count;
  reg [3:0] i;
  assign neighbors = {n7, n6, n5, n4, n3, n2, n1, n0};
  always @(neighbors or self) begin
   count = 0;
    for (i = 0; i < 8; i = i+1) count = count + neighbors[i];
    out = (count == 3);
    out = out | ((self == 1) & (count == 2));
  end
endmodule
Autumn 2000
                      CSE370 - II - Combinational Logic
                                                            72
```

