Combinational Iogic

H Basic logic
囚 Boolean algebra，proofs by re－writing，proofs by perfect induction \triangle Logic functions，truth tables，and switches ® NOT，AND，OR，NAND，NOR，XOR，．．．，minimal set
\＆Logic realization
囚 two－level logic and canonical forms，incompletely specified functions囚 multi－level logic，converting between ANDs and ORs

H Simplification
囚 uniting theorem
© transformations on networks of Boolean functions
\＆Time behavior
भ Hardware description languages

Possible logic functions of two variables

H There are 16 possible functions of 2 input variables：
® in general，there are $2^{* *}\left(2^{* *} n\right)$ functions of n inputs

Cost of different logic functions

If Different functions are easier or harder to implement
® each has a cost associated with the number of switches needed囚 0 （F0）and 1 （F15）：require 0 switches，directly connect output to low／high囚 $X(F 3)$ and $Y(F 5)$ ：require 0 switches，output is one of inputs
囚 X^{\prime}（F12）and $Y^{\prime}(F 10)$ ：require 2 switches for＂inverter＂or NOT－gate
囚 X nor $Y(F 4)$ and X nand $Y(F 14)$ ：require 4 switches
囚 X or Y（F7）and X and $Y(F 1)$ ：require 6 switches
囚 $X=Y$（F9）and $X \oplus Y$（F6）：require 16 switches
囚 thus，because NOT，NOR，and NAND are the cheapest they are the functions we implement the most in practice

Minimal set of functions

If Can we implement all logic functions from NOT，NOR，and NAND？
\triangle For example，implementing X and Y is the same as implementing not（ X nand Y ）
H In fact，we can do it with only NOR or only NAND
囚 NOT is just a NAND or a NOR with both inputs tied together

囚 and NAND å ${ }^{1}$ nd N1 NOR are＂duals＂，

that is，its easy to implement one using the other
$X \underline{\operatorname{nand}} Y \equiv$ not $(($ not $X)$ nor（not $Y))$
H But lets not moxenorolyast $\overline{=}$ ．not（（not X ）nand（not Y））
\triangle lets look at the mathematical foundation of logic

An algebraic structure

If An algebraic structure consists of
囚 a set of elements B
囚 binary operations $\{+, \bullet\}$
囚 and a unary operation $\{$＇$\}$
囚 such that the following axioms hold：

1．the set B contains at least two elements：a, b
2．closure：$\quad a+b$ is in $B \quad a \cdot b$ is in B
3．commutativity：$\quad a+b=b+a \quad a \cdot b=b \cdot a$
4．associativity：$\quad a+(b+c)=(a+b)+c \quad a \bullet(b \cdot c)=(a \cdot b) \bullet c$
5．identity：
$a \cdot 1=a$
6．distributivity：$\quad a+(b \cdot c)=(a+b) \cdot(a+c) \quad a \bullet(b+c)=(a \bullet b)+(a \bullet c)$
7．complementarity：$a+a^{\prime}=1 \quad a \cdot a^{\prime}=0$

Boolean algebra

H Boolean algebra
囚 $B=\{0,1\}$
v variables
囚＋is logical OR，• is logical AND
$\boxed{ }^{\prime}$ is logical NOT
H All algebraic axioms hold

Logic functions and Boolean algebra

H Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ',+ , and \bullet

Boolean expression that is true when the variables X and Y have the same value
X, Y are Boolean algebra variables and false, otherwise

Axioms and theorems of Boolean algebra

\mathscr{H} identity

1. $x+0=X \quad$ 1D. $X \cdot 1=x$

H null
2. $x+1=1$

2D. $X \cdot 0=0$
\% idempotency:
3. $X+X=X$

3D. $X \cdot X=X$
H involution:
4. $\left(X^{\prime}\right)^{\prime}=X$

H complementarity:
5. $X+X^{\prime}=1$ 5D. $X \cdot X^{\prime}=0$
\& commutativity:
6. $X+Y=Y+X \quad$ 6D. $X \bullet Y=Y \bullet X$
\& $\frac{\text { associativity: }}{7 .}$
7. $(X+Y)+Z=X+(Y+Z) \quad$ 7D. $(X \bullet Y) \bullet Z=X \bullet(Y \bullet Z)$

Axioms and theorems of Boolean algebra (cont'd)

\mathscr{H} distributivity:
8. $X \bullet(Y+Z)=(X \bullet Y)+(X \bullet Z) \quad$ 8D. $X+(Y \bullet Z)=(X+Y) \bullet(X+Z)$
\& uniting:
9. $X \bullet Y+X \cdot Y^{\prime}=X \quad$ 9D. $(X+Y) \bullet\left(X+Y^{\prime}\right)=X$

H absorption:
10. $X+X \cdot Y=X \quad$ 10D. $X \bullet(X+Y)=X$
11. $\left(X+Y^{\prime}\right) \bullet Y=X \bullet Y$ 11D. $\left(X \bullet Y^{\prime}\right)+Y=X+Y$
\& factoring:
12. $(X+Y) \cdot\left(X^{\prime}+Z\right)=$

12D. $X \cdot Y+X^{\prime} \cdot Z=$

$$
X \bullet Z+X^{\prime} \cdot Y \quad(X+Z) \cdot\left(X^{\prime}+Y\right)
$$

H concensus:
13. $(X \cdot Y)+(Y \bullet Z)+\left(X^{\prime} \bullet Z\right)=$ $X \bullet Y+X^{\prime} \cdot Z$

13D. $(X+Y) \cdot(Y+Z) \cdot\left(X^{\prime}+Z\right)=$
$(X+Y) \cdot\left(X^{\prime}+Z\right)$

Axioms and theorems of Boolean algebra (cont')

H de Morgan's:
14. $(X+Y+\ldots)^{\prime}=X^{\prime} \bullet Y^{\prime} \bullet \ldots \quad$ 14D. $(X \bullet Y \bullet \ldots)^{\prime}=X^{\prime}+Y^{\prime}+\ldots$

H generalized de Morgan's:
15. $f^{\prime}\left(X_{1}, X_{2}, \ldots, X_{n}, 0,1,+, \bullet\right)=f\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}, 1,0, \bullet,+\right)$

H establishes relationship between \bullet and +

Axioms and theorems of Boolean algebra（cont＇）

H Duality
® a dual of a Boolean expression is derived by replacing
－by + ，＋by $\bullet, 0$ by 1 ，and 1 by 0 ，and leaving variables unchanged
any theorem that can be proven is thus also proven for its dual！
囚 a meta－theorem（a theorem about theorems）
\mathscr{H} duality：
16．$X+Y+\ldots \Leftrightarrow X \bullet Y \bullet . .$.
\＆generalized duality：
17．$f\left(X_{1}, X_{2}, \ldots, X_{n}, 0,1,+, \bullet\right) \Leftrightarrow f\left(X_{1}, X_{2}, \ldots, X_{n}, 1,0, \bullet,+\right)$
\＆Different than deMorgan＇s Law
© this is a statement about theorems
囚 this is not a way to manipulate（re－write）expressions

Proving theorems（rewriting）

H Using the axioms of Boolean algebra：
囚e．g．，prove the theorem：$X \bullet Y+X \bullet Y^{\prime}=X$
distributivity（8）
complementarity（5） identity（1D）

$$
X \cdot Y+X \cdot Y^{\prime} \quad=X \bullet\left(Y+Y^{\prime}\right)
$$

$$
X \bullet\left(Y+Y^{\prime}\right) \quad=X \bullet(1)
$$

$$
X \bullet(1) \quad=X \leadsto
$$

囚 e．g．，prove the theorem：

$$
X+X \cdot Y \quad=X
$$

identity（1D）
distributivity（8）
identity（2）
identity（1D）
$X+X \cdot Y \quad=X \cdot 1+X \cdot Y$
$X \cdot 1+X \cdot Y=X \cdot(1+Y)$
$X \bullet(1+Y) \quad=X \bullet(1)$
$X \bullet(1) \quad=X \rightarrow$

Activity

\& Prove the following using the laws of Boolean algebra:
囚 $(X \cdot Y)+(Y \cdot Z)+\left(X^{\prime} \bullet Z\right)=X \bullet Y+X^{\prime} \bullet Z$

Proving theorems (perfect induction)

\mathscr{H} Using perfect induction (complete truth table):
囚 e.g., de Morgan's:

$$
(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}
$$

NOR is equivalent to AND with inputs complemented
$(X \cdot Y)^{\prime}=X^{\prime}+Y^{\prime}$
NAND is equivalent to OR with inputs complemented

A simple example: 1-bit binary adder

H Inputs: A, B, Carry-in
\& Outputs: Sum, Carry-out

A	B	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$
\mathrm{S}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{Cin}+\mathrm{A}^{\prime} \mathrm{B} \text { Cin' }+\mathrm{A} \mathrm{~B}^{\prime} \mathrm{Cin}^{\prime}+\mathrm{A} \mathrm{~B} \text { Cin }
$$

$$
\text { Cout }=A^{\prime} B \text { Cin }+A B^{\prime} \text { Cin }+A B \text { Cin' }+A B \text { Cin }
$$

Apply the theorems to simplify expressions

\mathscr{H} The theorems of Boolean algebra can simplify Boolean expressions
® e.g., full adder's carry-out function (same rules apply to any function)

$$
\begin{aligned}
\text { Cout } & =A^{\prime} B C i n+A B^{\prime} C i n+A B C i n \prime+A B C i n \\
& =A^{\prime} B C i n+A B^{\prime} C i n+A B C i n
\end{aligned}
$$

$=A^{\prime} B C i n+A B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
$=\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
= (1) $B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n '+A B C i n+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n+A B C i n+A B C i n$
$=B C i n+A\left(B^{\prime}+B\right) C i n+A B C i n ' A B C i n$
$=B C i n+A(1) C i n+A B C i n '+A B C i n$
$=B C i n+A C i n+A B\left(\mathrm{Cin}^{\prime}+\mathrm{Cin}\right)$
$=B C i n+A C i n+A B(1)$
$=B C i n+A C i n+A B$
adding extra terms creates new factoring opportunities

Activity

H Fill in the truth-table for a circuit that checks that a 4-bit number is divisible by 2,3 , or 5

x8	x4	X2	x1	By2	By3	By5
$\mathbf{0}$	0	0	0	1	1	1
0	0	0	1	0	0	0
0	0	1	0	1	0	0
0	0	1	1	0	1	0

H Write down Boolean expressions for By2, By3, and By5

Activity

From Boolean expressions to logic gates

H NOT
X^{\prime}
$\overline{\mathrm{X}}$
~X

H AND $X \bullet Y \quad X Y$
$X \wedge Y$

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

\% OR $X+Y \quad X \vee Y$

X	Y	\mathbf{Z}
0	0	0
0	1	1
1	0	1
1	1	1

From Boolean expressions to logic gates (cont'd)
\& NAND

X	Y	Z
0	0	1
0	1	1
1	0	1
1	1	0

H NOR

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	0

\& XOR
$X \oplus Y$

H XNOR
$\frac{X N O R}{X}$

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	0

$X \operatorname{xor} Y=X Y^{\prime}+X^{\prime} Y$
X or Y but not both ("inequality", "difference")

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	1

$X \underline{\operatorname{xnor}} Y=X Y+X^{\prime} Y^{\prime}$
X and Y are the same
("equality", "coincidence")

From Boolean expressions to logic gates（cont＇d）

If More than one way to map expressions to gates

囚 e．g．，$Z=A^{\prime} \cdot B^{\prime} \cdot(C+D)=\left(A^{\prime} \cdot\left(B^{\prime} \cdot(C+D)\right)\right)$

Waveform view of logic functions

H Just a sideways truth table
囚 but note how edges don＇t line up exactly囚 it takes time for a gate to switch its output！

Choosing different realizations of a function

A	B	C	Z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Which realization is best？

H Reduce number of inputs
囚 literal：input variable（complemented or not）
区can approximate cost of logic gate as 2 transitors per literal ®why not count inverters？
囚 fewer literals means less transistors
冈smaller circuits
囚 fewer inputs implies faster gates
® gates are smaller and thus also faster
囚 fan－ins（\＃of gate inputs）are limited in some technologies
H Reduce number of gates
® fewer gates（and the packages they come in）means smaller circuits区directly influences manufacturing costs

Which is the best realization？（cont＇d）

H Reduce number of levels of gates
囚 fewer level of gates implies reduced signal propagation delays
＠minimum delay configuration typically requires more gates冈wider，less deep circuits
H How do we explore tradeoffs between increased circuit delay and size？
囚 automated tools to generate different solutions
® logic minimization：reduce number of gates and complexity
囚 logic optimization：reduction while trading off against delay

Are all realizations equivalent？

H Under the same input stimuli，the three alternative implementations have almost the same waveform behavior
® delays are different
囚 glitches（hazards）may arise
囚 variations due to differences in number of gate levels and structure
\mathscr{H} The three implementations are functionally equivalent

Implementing Boolean functions

H Technology independent
囚 canonical forms
囚 two－level forms
囚 multi－level forms

H Technology choices
\triangle packages of a few gates
囚 regular logic
囚 two－level programmable logic
囚 multi－level programmable logic

Canonical forms

\％Truth table is the unique signature of a Boolean function
\＆Many alternative gate realizations may have the same truth table
\％Canonical forms
囚 standard forms for a Boolean expression
® provides a unique algebraic signature

Sum-of-products canonical forms

Hf Also known as disjunctive normal form
\& Also known as minterm expansion

Sum-of-products canonical form (cont'd)

H Product term (or minterm)
囚 ANDed product of literals - input combination for which output is true ® each variable appears exactly once, in true or inverted form (but not both)

A	B	C	minterms	
0	0	0	$\mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$	$\mathrm{m0}$
0	0	1	$\mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$	m 1
0	1	0	$\mathrm{~A}^{\prime} \mathrm{BC}^{\prime}$	m 2
0	1	1	$\mathrm{~A}^{\prime} \mathrm{BC}$	m 3
1	0	0	$\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$	m 4
1	0	1	$\mathrm{AB}^{\prime} \mathrm{C}$	m 5
1	1	0	ABC^{\prime}	m 6
1	1	1	ABC	m 7

short-hand notation for minterms of 3 variables

Product-of-sums canonical form

H Also known as conjunctive normal form
H Also known as maxterm expansion

$$
F^{\prime}=\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)
$$

Product-of-sums canonical form (cont'd)

If Sum term (or maxterm)
囚 ORed sum of literals - input combination for which output is false each variable appears exactly once, in true or inverted form (but not both)

A	B	C	maxterms	
0	0	0	$A+B+C$	M0
0	0	1	$A+B+C^{\prime}$	M 1
0	1	0	$A+B^{\prime}+C$	M2
0	1	1	$A+B^{\prime}+C^{\prime}$	M3
1	0	0	$A^{\prime}+B+C$	M4
1	0	1	$A^{\prime}+B+C^{\prime}$	M5
1	1	0	$A^{\prime}+B^{\prime}+C$	M6
1	1	1	$A^{\prime}+B^{\prime}+C^{\prime}$	M7

short-hand notation for maxterms of 3 variables

F in canonical form: $F(A, B, C)=\Pi M(0,2,4)$
$=M 0 \cdot M 2 \cdot M 4$
$=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
canonical form \neq minimal form
$F(A, B, C)=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
$=(A+B+C)\left(A+B^{\prime}+C\right)$
$(A+B+C)\left(A^{\prime}+B+C\right)$
$=(A+C)(B+C)$

S－o－P，P－o－S，and de Morgan＇s theorem

H Sum－of－products
$\triangle F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$
H Apply de Morgan＇s
囚 $\left(F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}$
囚 $F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$

H Product－of－sums
$\triangle F^{\prime}=\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)$
\％Apply de Morgan＇s
囚 $\left(F^{\prime}\right)^{\prime}=\left(\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\right)^{\prime}$ $\triangle F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C$

Four alternative two－level implementations of $F=A B+C$

Waveforms for the four alternatives

H Waveforms are essentially identical
囚 except for timing hazards（glitches）
囚 delays almost identical（modeled as a delay per level，not type of gate or number of inputs to gate）

Mapping between canonical forms

H Minterm to maxterm conversion
囚 use maxterms whose indices do not appear in minterm expansion囚 e．g．，$F(A, B, C)=\Sigma m(1,3,5,6,7)=\Pi M(0,2,4)$
\＆Maxterm to minterm conversion
囚 use minterms whose indices do not appear in maxterm expansion囚 e．g．，$F(A, B, C)=\Pi M(0,2,4)=\Sigma m(1,3,5,6,7)$
If Minterm expansion of F to minterm expansion of F^{\prime}
囚 use minterms whose indices do not appear
囚e．g．，$F(A, B, C)=\Sigma m(1,3,5,6,7) \quad F^{\prime}(A, B, C)=\Sigma m(0,2,4)$
H Maxterm expansion of F to maxterm expansion of F^{\prime}
囚 use maxterms whose indices do not appear
囚 e．g．，$F(A, B, C)=\Pi M(0,2,4) \quad F^{\prime}(A, B, C)=\Pi M(1,3,5,6,7)$

Incompleteley specified functions

H Example：binary coded decimal increment by 1
囚 BCD digits encode the decimal digits $0-9$ in the bit patterns 0000－1001

Notation for incompletely specified functions

H Don＇t cares and canonical forms
囚 so far，only represented on－set
囚 also represent don＇t－care－set
囚 need two of the three sets（on－set，off－set，dc－set）

H Canonical representations of the BCD increment by 1 function：
囚 $Z=m 0+\mathrm{m} 2+\mathrm{m} 4+\mathrm{m} 6+\mathrm{m} 8+\mathrm{d} 10+\mathrm{d} 11+\mathrm{d} 12+\mathrm{d} 13+\mathrm{d} 14+\mathrm{d} 15$
$\Delta Z=\Sigma[m(0,2,4,6,8)+d(10,11,12,13,14,15)]$
囚 Z＝M1 • M3 • M5 • M7 • M9 • D10 •D11 •D12 •D13 •D14 •D15
囚 $Z=\Pi[M(1,3,5,7,9) \cdot D(10,11,12,13,14,15)]$

Simplification of two－level combinational logic

H Finding a minimal sum of products or product of sums realization
exploit don＇t care information in the process
H Algebraic simplification
囚 not an algorithmic／systematic procedure
囚 how do you know when the minimum realization has been found？
\＆Computer－aided design tools
囚 precise solutions require very long computation times，especially for functions with many inputs（＞10）
囚 heuristic methods employed－＂educated guesses＂to reduce amount of computation and yield good if not best solutions
H Hand methods still relevant
Δ to understand automatic tools and their strengths and weaknesses囚 ability to check results（on small examples）

The uniting theorem

H Key tool to simplification：$A\left(B^{\prime}+B\right)=A$
H Essence of simplification of two－level logic
® find two element subsets of the ON－set where only one variable changes its value－this single varying variable can be eliminated and a single product term used to represent both elements

$$
F=A^{\prime} B^{\prime}+A B^{\prime}=\left(A^{\prime}+A\right) B^{\prime}=B^{\prime}
$$

Implementations of two-level logic

\% Sum-of-products
A AND gates to form product terms (minterms)囚 OR gate to form sum

H Product-of-sums
\triangle OR gates to form sum terms (maxterms) ® AND gates to form product

Two-level logic using NAND gates

H Replace minterm AND gates with NAND gates
H Place compensating inversion at inputs of OR gate

Two-level logic using NAND gates (cont'd)

If OR gate with inverted inputs is a NAND gate
囚 de Morgan's: $\quad A^{\prime}+B^{\prime}=(A \bullet B)^{\prime}$
H Two-level NAND-NAND network
® inverted inputs are not counted
® in a typical circuit, inversion is done once and signal distributed

Two-level logic using NOR gates

H Replace maxterm OR gates with NOR gates
H Place compensating inversion at inputs of AND gate

Two－level logic using NOR gates（cont＇d）

If AND gate with inverted inputs is a NOR gate
囚 de Morgan＇s：$\quad A^{\prime} \bullet B^{\prime}=(A+B)^{\prime}$
H Two－level NOR－NOR network
® inverted inputs are not counted
® in a typical circuit，inversion is done once and signal distributed

Two－level logic using NAND and NOR gates

H NAND－NAND and NOR－NOR networks
囚 de Morgan＇s law：$(A+B)^{\prime}=A^{\prime} \cdot B^{\prime}$
$(A \cdot B)^{\prime}=A^{\prime}+B^{\prime}$
囚 written differently：$A+B=\left(A^{\prime} \bullet B^{\prime}\right)^{\prime}$
$(A \cdot B)=\left(A^{\prime}+B^{\prime}\right)^{\prime}$
H In other words－
$\triangle O R$ is the same as NAND with complemented inputs
\triangle AND is the same as NOR with complemented inputs \triangle NAND is the same as OR with complemented inputs \triangle NOR is the same as AND with complemented inputs

Conversion between forms

H Convert from networks of ANDs and ORs to networks of NANDs and NORs囚 introduce appropriate inversions（＂bubbles＂）
H Each introduced＂bubble＂must be matched by a corresponding＂bubble＂囚 conservation of inversions囚 do not alter logic function
If Example：AND／OR to NAND／NAND

Conversion between forms（cont＇d）

H Example：verify equivalence of two forms

$$
\begin{aligned}
Z & =\left[(A \bullet B)^{\prime} \bullet(C \bullet D)^{\prime}\right]^{\prime} \\
& =\left[\left(A^{\prime}+B^{\prime}\right) \bullet\left(C^{\prime}+D^{\prime}\right)\right]^{\prime} \\
& =\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right] \\
& =(A \bullet B)+(C \bullet D)
\end{aligned}
$$

Conversion between forms (cont'd)

H Example: verify equivalence of two forms

$$
\left.\left.\begin{array}{rlrl}
Z & =\left\{\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]^{\prime}\right.
\end{array}\right\}^{\prime}\right)
$$

Multi－level logic

\＆$x=A D F+A E F+B D F+B E F+C D F+C E F+G$
® reduced sum－of－products form－already simplified
囚 6×3－input AND gates $+1 \times 7$－input OR gate（that may not even exist！）
囚 25 wires（ 19 literals plus 6 internal wires）
\＆$x=(A+B+C)(D+E) F+G$
囚 factored form－not written as two－level S－o－P
囚 1×3－input OR gate， 2×2－input OR gates， 1×3－input AND gate
囚 10 wires（ 7 literals plus 3 internal wires）

Conversion of multi－level logic to NAND gates

$\mathscr{H} \mathrm{F}=\mathrm{A}(\mathrm{B}+\mathrm{CD})+\mathrm{BC} \mathrm{C}^{\prime}$

Conversion between forms

H Example
(a)

(b)
original circuit
(c)

distribute bubbles some mismatches
insert inverters to fix mismatches

AND－OR－invert gates

H AOI function：three stages of logic－AND，OR，Invert
® multiple gates＂packaged＂as a single circuit block
logical concept

AND OR Invert
possible implementation

NAND NAND Invert
2×2 AOI gate symbol

3×2 AOI gate symbol

Conversion to AOI forms

भ General procedure to place in AOI form
囚 compute the complement of the function in sum－of－products form囚 by grouping the 0s in the Karnaugh map
H Example：XOR implementation－A xor $B=A^{\prime} B+A B^{\prime}$囚AOI form：$F=\left(A^{\prime} B^{\prime}+A B\right)^{\prime}$

Examples of using AOI gates

H Example：
$\triangle F=B C^{\prime}+A C^{\prime}+A B$
囚 $F^{\prime}=A^{\prime} B^{\prime}+A^{\prime} C+B^{\prime} C$
囚 Implemented by 2－input 3－stack AOI gate
$\triangle F=(A+B)\left(A+C^{\prime}\right)\left(B+C^{\prime}\right)$
$\Delta F^{\prime}=\left(B^{\prime}+C\right)\left(A^{\prime}+C\right)\left(A^{\prime}+B^{\prime}\right)$
囚 Implemented by 2－input 3－stack OAI gate
\＆Example：4－bit equality function
$囚 Z=\left(A 0 B 0+A 0^{\prime} B 0^{\prime}\right)\left(A 1 B 1+A 1^{\prime} B 1^{\prime}\right)\left(A 2 B 2+A 2^{\prime} B 2^{\prime}\right)\left(A 3 B 3+A 3^{\prime} B 3^{\prime}\right)$

each implemented in a single 2×2 AOI gate

Examples of using AOI gates（cont＇d）

H Example：AOI implementation of 4－bit equality function

Summary for multi－level logic

H Advantages
® circuits may be smaller
囚 gates have smaller fan－in
囚 circuits may be faster
H Disadvantages
囚 more difficult to design
囚 tools for optimization are not as good as for two－level
囚 analysis is more complex

Time behavior of combinational networks

H Waveforms
囚 visualization of values carried on signal wires over time囚 useful in explaining sequences of events（changes in value）
H Simulation tools are used to create these waveforms
囚 input to the simulator includes gates and their connections
囚 input stimulus，that is，input signal waveforms
\％Some terms
இ gate delay－time for change at input to cause change at output
凹min delay－typical／nominal delay－max delay
区careful designers design for the worst case
囚 rise time－time for output to transition from low to high voltage
囚 fall time－time for output to transition from high to low voltage
囚 pulse width－time that an output stays high or stays low between changes

Momentary changes in outputs

H Can be useful - pulse shaping circuits
H Can be a problem - incorrect circuit operation (glitches/hazards)
\& Example: pulse shaping circuit囚 $A^{\prime} \cdot A=0$
delays matter in function

Autumn 2000

Oscillatory behavior

\& Another pulse shaping circuit

Hardware description languages

H Describe hardware at varying levels of abstraction
\＆Structural description
囚 textual replacement for schematic
Q hierarchical composition of modules from primitives
H Behavioral／functional description
® describe what module does，not how
囚 synthesis generates circuit for module
H Simulation semantics

HDLs

If Abel（circa 1983）－developed by Data－I／O
囚 targeted to programmable logic devices
囚 not good for much more than state machines
H ISP（circa 1977）－research project at CMU
囚 simulation，but no synthesis
H Verilog（circa 1985）－developed by Gateway（absorbed by Cadence）
囚 similar to Pascal and C
d delays is only interaction with simulator
囚 fairly efficient and easy to write
囚 IEEE standard
\mathscr{H} VHDL（circa 1987）－DoD sponsored standard
囚 similar to Ada（emphasis on re－use and maintainability）
囚 simulation semantics visible
囚 very general but verbose
囚 IEEE standard

Verilog

\％Supports structural and behavioral descriptions
\＆Structural
® explicit structure of the circuit
囚 e．g．，each logic gate instantiated and connected to others
\％Behavioral
囚 program describes input／output behavior of circuit囚 many structural implementations could have same behavior囚 e．g．，different implementation of one Boolean function

H We＇ll only be using behavioral Verilog in DesignWorks囚 rely on schematic when we want structural descriptions

Structural model

```
module xor_gate (out, a, b);
    input a, b;
    output out;
    wire abar, bbar, t1, t2;
    inverter invA (abar, a);
    inverter invB (bbar, b);
    and_gate and1 (t1, a, bbar);
    and_gate and2 (t2, b, abar);
    or_gate or1 (out, t1, t2);
endmodule
```


Simple behavioral model

H Continuous assignment
module xor_gate (out, $a, b)$; input a, b; output out; reg out;
simulation register keeps track of value of signal
assign \#6 out $=a^{\wedge} \mathrm{b}$;
endmodule
delay from input change to output change

Simple behavioral model

H always block

```
    module xor_gate (out, \(a, b)\);
```

input
output
reg
always @(a or b) begin \#6 out $=a^{\wedge} b_{i}$
end
endmodule
specifies when block is executed ie. triggered by which signals

Driving a simulation

$\begin{array}{lll}\text { module stimulus } & (\mathbf{x}, \mathrm{y}) ; \\ \text { output } & \mathbf{x , y ;} \\ \text { reg }[1: 0] & \text { cnt; } & \end{array}$

endmodule

Complete Simulation

Ho Instantiate stimulus component and device to test in a schematic

Comparator Example

```
module Compare1 (A, B, Equal, Alarger, Blarger);
    input A, B;
    output Equal, Alarger, Blarger;
    assign #5 Equal = (A & B) | (~A & ~B);
    assign #3 Alarger = (A & ~B);
    assign #3 Blarger = (~A & B);
endmodule
```


More Complex Behavioral Model

```
module life (n0, n1, n2, n3, n4, n5, n6, n7, self, out);
    input n0, n1, n2, n3, n4, n5, n6, n7, self;
    output out;
    reg out;
    reg [7:0] neighbors;
    reg [3:0] count;
    reg [3:0] i;
    assign neighbors = {n7, n6, n5, n4, n3, n2, n1, n0};
    always @(neighbors or self) begin
        count = 0;
        for (i = 0; i < 8; i = i+1) count = count + neighbors[i];
        out = (count == 3);
        out = out | ((self == 1) & (count == 2));
    end
endmodule

\section*{Hardware Description Languages vs. Programming Languages}
```

H Program structure
instantiation of multiple components of the same type
specify interconnections between modules via schematic
hierarchy of modules (only leaves can be HDL in DesignWorks)
% Assignment
@ continuous assignment (logic always computes)
@ropagation delay (computation takes time)
| timing of signals is important (when does computation have its effect)
\& Data structures
size explicitly spelled out - no dynamic structures
@ no pointers
H Parallelism
@ hardware is naturally parallel (must support multiple threads)
@ assignments can occur in parallel (not just sequentially)

```

\section*{Hardware Description Languages and Combinational Logic}

Ho Modules - specification of inputs, outputs, bidirectional, and internal signals
\& Continuous assignment - a gate's output is a function of its inputs at all times (doesn't need to wait to be "called")
H Propagation delay-concept of time and delay in input affecting gate output
It Composition - connecting modules together with wires
H Hierarchy - modules encapsulate functional blocks
H Specification of don't care conditions (accomplished by setting output to " \(x\) ")

\section*{Combinational logic summary}

H Logic functions，truth tables，and switches
囚 NOT，AND，OR，NAND，NOR，XOR，．．．，minimal set
If Axioms and theorems of Boolean algebra \(\triangle\) proofs by re－writing and perfect induction
H Gate logic
囚 networks of Boolean functions and their time behavior
H Canonical forms
囚 two－level and incompletely specified functions
H Simplification
囚 two－level simplification
If Later
囚 automation of simplification
囚 multi－level logic
© design case studies
囚 time behavior```

