
Autumn 2000 CSE370 - II - Combinational Logic 1

Combinational logic

! Basic logic
" Boolean algebra, proofs by re-writing, proofs by perfect induction
" Logic functions, truth tables, and switches
" NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

! Logic realization
" two-level logic and canonical forms, incompletely specified functions
" multi-level logic, converting between ANDs and ORs

! Simplification
" uniting theorem
" transformations on networks of Boolean functions

! Time behavior

! Hardware description languages

Autumn 2000 CSE370 - II - Combinational Logic 2

X Y 16 possible functions (F0�F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0
X and Y

X Y

X or Y

not Y not X 1

X
Y F

X xor Y
X nor Y

not (X or Y)

X = Y X nand Y
not (X and Y)

Possible logic functions of two variables

! There are 16 possible functions of 2 input variables:
" in general, there are 2**(2**n) functions of n inputs

Autumn 2000 CSE370 - II - Combinational Logic 3

Cost of different logic functions

! Different functions are easier or harder to implement
" each has a cost associated with the number of switches needed
" 0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high
" X (F3) and Y (F5): require 0 switches, output is one of inputs
" X� (F12) and Y� (F10): require 2 switches for "inverter" or NOT-gate
" X nor Y (F4) and X nand Y (F14): require 4 switches
" X or Y (F7) and X and Y (F1): require 6 switches
" X = Y (F9) and X ⊕ Y (F6): require 16 switches

" thus, because NOT, NOR, and NAND are the cheapest they are the
functions we implement the most in practice

Autumn 2000 CSE370 - II - Combinational Logic 4

X Y X nand Y
0 0 1

1 1 0

X Y X nor Y
0 0 1

1 1 0

X nand Y ≡ not ((not X) nor (not Y))
X nor Y ≡ not ((not X) nand (not Y))

Minimal set of functions

! Can we implement all logic functions from NOT, NOR, and NAND?
" For example, implementing X and Y

is the same as implementing not (X nand Y)
! In fact, we can do it with only NOR or only NAND

" NOT is just a NAND or a NOR with both inputs tied together

" and NAND and NOR are "duals",
that is, its easy to implement one using the other

! But lets not move too fast . . .
" lets look at the mathematical foundation of logic

Autumn 2000 CSE370 - II - Combinational Logic 5

An algebraic structure

! An algebraic structure consists of
" a set of elements B
" binary operations { + , � }
" and a unary operation { � }
" such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: a + b is in B a � b is in B
3. commutativity: a + b = b + a a � b = b � a
4. associativity: a + (b + c) = (a + b) + c a � (b � c) = (a � b) � c
5. identity: a + 0 = a a � 1 = a
6. distributivity: a + (b � c) = (a + b) � (a + c) a � (b + c) = (a � b) + (a � c)
7. complementarity: a + a� = 1 a � a� = 0

Autumn 2000 CSE370 - II - Combinational Logic 6

Boolean algebra

! Boolean algebra
" B = {0, 1}
" variables
" + is logical OR, � is logical AND
" � is logical NOT

! All algebraic axioms hold

Autumn 2000 CSE370 - II - Combinational Logic 7

X, Y are Boolean algebra variables

X Y X � Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X� Y� X � Y X� � Y� (X � Y) + (X� � Y�)
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

(X � Y) + (X� � Y�) ≡≡≡≡ X = Y

X Y X� X� � Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is
true when the variables X
and Y have the same value
and false, otherwise

Logic functions and Boolean algebra

! Any logic function that can be expressed as a truth table can be written as
an expression in Boolean algebra using the operators: �, +, and �

Autumn 2000 CSE370 - II - Combinational Logic 8

Axioms and theorems of Boolean algebra

! identity
1. X + 0 = X 1D. X � 1 = X

! null
2. X + 1 = 1 2D. X � 0 = 0

! idempotency:
3. X + X = X 3D. X � X = X

! involution:
4. (X�)� = X

! complementarity:
5. X + X� = 1 5D. X � X� = 0

! commutativity:
6. X + Y = Y + X 6D. X � Y = Y � X

! associativity:
7. (X + Y) + Z = X + (Y + Z) 7D. (X � Y) � Z = X � (Y � Z)

Autumn 2000 CSE370 - II - Combinational Logic 9

Axioms and theorems of Boolean algebra (cont�d)

! distributivity:
8. X � (Y + Z) = (X � Y) + (X � Z) 8D. X + (Y � Z) = (X + Y) � (X + Z)

! uniting:
9. X � Y + X � Y� = X 9D. (X + Y) � (X + Y�) = X

! absorption:
10. X + X � Y = X 10D. X � (X + Y) = X
11. (X + Y�) � Y = X � Y 11D. (X � Y�) + Y = X + Y

! factoring:
12. (X + Y) � (X� + Z) = 12D. X � Y + X� � Z =

X � Z + X� � Y (X + Z) � (X� + Y)

! concensus:
13. (X � Y) + (Y � Z) + (X� � Z) = 13D. (X + Y) � (Y + Z) � (X� + Z) =

X � Y + X� � Z (X + Y) � (X� + Z)

Autumn 2000 CSE370 - II - Combinational Logic 10

Axioms and theorems of Boolean algebra (cont�)

! de Morgan�s:
14. (X + Y + ...)� = X� � Y� � ... 14D. (X � Y � ...)� = X� + Y� + ...

! generalized de Morgan�s:
15. f�(X1,X2,...,Xn,0,1,+,�) = f(X1�,X2�,...,Xn�,1,0,�,+)

! establishes relationship between � and +

Autumn 2000 CSE370 - II - Combinational Logic 11

Axioms and theorems of Boolean algebra (cont�)

! Duality
" a dual of a Boolean expression is derived by replacing

� by +, + by �, 0 by 1, and 1 by 0, and leaving variables unchanged
" any theorem that can be proven is thus also proven for its dual!
" a meta-theorem (a theorem about theorems)

! duality:
16. X + Y + ... ⇔ X � Y � ...

! generalized duality:
17. f (X1,X2,...,Xn,0,1,+,�) ⇔ f(X1,X2,...,Xn,1,0,�,+)

! Different than deMorgan�s Law
" this is a statement about theorems
" this is not a way to manipulate (re-write) expressions

Autumn 2000 CSE370 - II - Combinational Logic 12

Proving theorems (rewriting)

! Using the axioms of Boolean algebra:
" e.g., prove the theorem: X � Y + X � Y� = X

" e.g., prove the theorem: X + X � Y = X

distributivity (8) X � Y + X � Y� = X � (Y + Y�)
complementarity (5) X � (Y + Y�) = X � (1)
identity (1D) X � (1) = X ➼

identity (1D) X + X � Y = X � 1 + X � Y
distributivity (8) X � 1 + X � Y = X � (1 + Y)
identity (2) X � (1 + Y) = X � (1)
identity (1D) X � (1) = X ➼

Autumn 2000 CSE370 - II - Combinational Logic 13

Activity

! Prove the following using the laws of Boolean algebra:
" (X � Y) + (Y � Z) + (X� � Z) = X � Y + X� � Z

(X � Y) + (Y � Z) + (X� � Z)

identity (X � Y) + (1) � (Y � Z) + (X� � Z)

complementarity (X � Y) + (X� + X) � (Y � Z) + (X� � Z)

distributivity (X � Y) + (X� � Y � Z) + (X � Y � Z) + (X� � Z)

associativity (X � Y) + (X � Y � Z) + (X� � Y � Z) + (X� � Z)

factoring (X � Y) � (1 + Z) + (X� � Z) � (1 + Y)

null (X � Y) � (1) + (X� � Z) � (1)

identity (X � Y) + (X� � Z) ➼

Autumn 2000 CSE370 - II - Combinational Logic 14

(X + Y)� = X� � Y�
NOR is equivalent to AND
with inputs complemented

(X � Y)� = X� + Y�
NAND is equivalent to OR
with inputs complemented

X Y X� Y� (X + Y)� X� � Y�
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

X Y X� Y� (X � Y)� X� + Y�
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Proving theorems (perfect induction)

! Using perfect induction (complete truth table):
" e.g., de Morgan�s:

1
0
0
0

1
1
1
0

1
0
0
0

1
1
1
0

Autumn 2000 CSE370 - II - Combinational Logic 15

A simple example: 1-bit binary adder

! Inputs: A, B, Carry-in

! Outputs: Sum, Carry-out A
B

Cin
Cout

S

A B Cin S Cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = A� B Cin + A B� Cin + A B Cin� + A B Cin

S = A� B� Cin + A� B Cin� + A B� Cin� + A B Cin

Autumn 2000 CSE370 - II - Combinational Logic 16

Apply the theorems to simplify expressions

! The theorems of Boolean algebra can simplify Boolean expressions
" e.g., full adder�s carry-out function (same rules apply to any function)

Cout = A� B Cin + A B� Cin + A B Cin� + A B Cin
= A� B Cin + A B� Cin + A B Cin� + A B Cin + A B Cin
= A� B Cin + A B Cin + A B� Cin + A B Cin� + A B Cin
= (A� + A) B Cin + A B� Cin + A B Cin� + A B Cin
= (1) B Cin + A B� Cin + A B Cin� + A B Cin
= B Cin + A B� Cin + A B Cin� + A B Cin + A B Cin
= B Cin + A B� Cin + A B Cin + A B Cin� + A B Cin
= B Cin + A (B� + B) Cin + A B Cin� + A B Cin
= B Cin + A (1) Cin + A B Cin� + A B Cin
= B Cin + A Cin + A B (Cin� + Cin)
= B Cin + A Cin + A B (1)
= B Cin + A Cin + A B adding extra terms

creates new factoring
opportunities

Autumn 2000 CSE370 - II - Combinational Logic 17

Activity

! Fill in the truth-table for a circuit that checks that a 4-bit number is divisible
by 2, 3, or 5

! Write down Boolean expressions for By2, By3, and By5

X8 X4 X2 X1 By2 By3 By5
0 0 0 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0

Autumn 2000 CSE370 - II - Combinational Logic 18

X8 X4 X2 X1 By2 By3 By5
0 0 0 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0
0 1 0 0 1 0 0
0 1 0 1 0 0 1
0 1 1 0 1 1 0
0 1 1 1 0 0 0
1 0 0 0 1 0 0
1 0 0 1 0 1 0
1 0 1 0 1 0 1
1 0 1 1 0 0 0
1 1 0 0 1 1 0
1 1 0 1 0 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 1

Activity

By2 = X8�X4�X2�X1� + X8�X4�X2X1�
+ X8�X4X2�X1� + X8�X4X2X1�
+ X8X4�X2�X1� + X8X4�X2X1�
+ X8X4X2�X1� + X8X4X2X1�
= X1�

By3 = X8�X4�X2�X1� + X8�X4�X2X1
+ X8�X4X2X1� + X8X4�X2�X1
+ X8X4X2�X1� + X8X4X2X1

By5 = X8�X4�X2�X1� + X8�X4X2�X1
+ X8X4�X2X1� + X8X4X2X1

Autumn 2000 CSE370 - II - Combinational Logic 19

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y
0 1
1 0

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X Y

X

X

Y

Y

Z

Z

From Boolean expressions to logic gates

! NOT X� X ~X

! AND X � Y XY X ∧ Y

! OR X + Y X ∨ Y

Autumn 2000 CSE370 - II - Combinational Logic 20

X
Y Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X

Y

X
Y

Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y� + X� Y
X or Y but not both

("inequality", "difference")

X xnor Y = X Y + X’ Y’
X and Y are the same

("equality", "coincidence")

From Boolean expressions to logic gates (cont�d)

! NAND

! NOR

! XOR
X ⊕ Y

! XNOR
X = Y

Autumn 2000 CSE370 - II - Combinational Logic 21

T1
T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z

From Boolean expressions to logic gates (cont�d)

! More than one way to map expressions to gates

" e.g., Z = A� � B� � (C + D) = (A� � (B� � (C + D)))

Autumn 2000 CSE370 - II - Combinational Logic 22

time

change in Y takes time to "propagate" through gates

Waveform view of logic functions

! Just a sideways truth table
" but note how edges don�t line up exactly
" it takes time for a gate to switch its output!

Autumn 2000 CSE370 - II - Combinational Logic 23

A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Choosing different realizations of a function

two-level realization
(we don’t count NOT gates)

XOR gate (easier to draw
but costlier to build)

multi-level realization
(gates with fewer inputs)

Autumn 2000 CSE370 - II - Combinational Logic 24

Which realization is best?

! Reduce number of inputs
" literal: input variable (complemented or not)

⌧can approximate cost of logic gate as 2 transitors per literal
⌧why not count inverters?

" fewer literals means less transistors
⌧smaller circuits

" fewer inputs implies faster gates
⌧gates are smaller and thus also faster

" fan-ins (# of gate inputs) are limited in some technologies

! Reduce number of gates
" fewer gates (and the packages they come in) means smaller circuits

⌧directly influences manufacturing costs

Autumn 2000 CSE370 - II - Combinational Logic 25

Which is the best realization? (cont�d)

! Reduce number of levels of gates
" fewer level of gates implies reduced signal propagation delays
" minimum delay configuration typically requires more gates

⌧wider, less deep circuits

! How do we explore tradeoffs between increased circuit delay and size?
" automated tools to generate different solutions
" logic minimization: reduce number of gates and complexity
" logic optimization: reduction while trading off against delay

Autumn 2000 CSE370 - II - Combinational Logic 26

Are all realizations equivalent?

! Under the same input stimuli, the three alternative implementations have
almost the same waveform behavior
" delays are different
" glitches (hazards) may arise
" variations due to differences in number of gate levels and structure

! The three implementations are functionally equivalent

Autumn 2000 CSE370 - II - Combinational Logic 27

Implementing Boolean functions

! Technology independent
" canonical forms
" two-level forms
" multi-level forms

! Technology choices
" packages of a few gates
" regular logic
" two-level programmable logic
" multi-level programmable logic

Autumn 2000 CSE370 - II - Combinational Logic 28

Canonical forms

! Truth table is the unique signature of a Boolean function

! Many alternative gate realizations may have the same truth table

! Canonical forms
" standard forms for a Boolean expression
" provides a unique algebraic signature

Autumn 2000 CSE370 - II - Combinational Logic 29

A B C F F�
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F� = A�B�C� + A�BC� + AB�C�

Sum-of-products canonical forms

! Also known as disjunctive normal form

! Also known as minterm expansion

F = 001 011 101 110 111

+ A�BC + AB�C + ABC� + ABCA�B�C

Autumn 2000 CSE370 - II - Combinational Logic 30

short-hand notation for
minterms of 3 variables

A B C minterms
0 0 0 A�B�C� m0
0 0 1 A�B�C m1
0 1 0 A�BC� m2
0 1 1 A�BC m3
1 0 0 AB�C� m4
1 0 1 AB�C m5
1 1 0 ABC� m6
1 1 1 ABC m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

= m1 + m3 + m5 + m6 + m7
= A�B�C + A�BC + AB�C + ABC� + ABC

canonical form ≠ minimal form
F(A, B, C) = A�B�C + A�BC + AB�C + ABC + ABC�

= (A�B� + A�B + AB� + AB)C + ABC�
= ((A� + A)(B� + B))C + ABC�
= C + ABC�
= ABC� + C
= AB + C

Sum-of-products canonical form (cont�d)

! Product term (or minterm)
" ANDed product of literals � input combination for which output is true
" each variable appears exactly once, in true or inverted form (but not both)

Autumn 2000 CSE370 - II - Combinational Logic 31

A B C F F�
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F = 000 010 100
F =

F� = (A + B + C�) (A + B� + C�) (A� + B + C�) (A� + B� + C) (A� + B� + C�)

Product-of-sums canonical form

! Also known as conjunctive normal form

! Also known as maxterm expansion

(A + B + C) (A + B� + C) (A� + B + C)

Autumn 2000 CSE370 - II - Combinational Logic 32

A B C maxterms
0 0 0 A+B+C M0
0 0 1 A+B+C� M1
0 1 0 A+B�+C M2
0 1 1 A+B�+C� M3
1 0 0 A�+B+C M4
1 0 1 A�+B+C� M5
1 1 0 A�+B�+C M6
1 1 1 A�+B�+C� M7

short-hand notation for
maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

= M0 � M2 � M4
= (A + B + C) (A + B� + C) (A� + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B� + C) (A� + B + C)

= (A + B + C) (A + B� + C)
(A + B + C) (A� + B + C)

= (A + C) (B + C)

Product-of-sums canonical form (cont�d)

! Sum term (or maxterm)
" ORed sum of literals � input combination for which output is false
" each variable appears exactly once, in true or inverted form (but not both)

Autumn 2000 CSE370 - II - Combinational Logic 33

S-o-P, P-o-S, and de Morgan�s theorem

! Sum-of-products
" F� = A�B�C� + A�BC� + AB�C�

! Apply de Morgan�s
" (F�)� = (A�B�C� + A�BC� + AB�C�)�
" F = (A + B + C) (A + B� + C) (A� + B + C)

! Product-of-sums
" F� = (A + B + C�) (A + B� + C�) (A� + B + C�) (A� + B� + C) (A� + B� + C�)

! Apply de Morgan�s
" (F�)� = ((A + B + C�)(A + B� + C�)(A� + B + C�)(A� + B� + C)(A� + B� + C�))�
" F = A�B�C + A�BC + AB�C + ABC� + ABC

Autumn 2000 CSE370 - II - Combinational Logic 34

canonical sum-of-products

minimized sum-of-products

canonical product-of-sums

minimized product-of-sums

F1

F2

F3

B

A

C

F4

Four alternative two-level implementations
of F = AB + C

Autumn 2000 CSE370 - II - Combinational Logic 35

Waveforms for the four alternatives

! Waveforms are essentially identical
" except for timing hazards (glitches)
" delays almost identical (modeled as a delay per level, not type of gate

or number of inputs to gate)

Autumn 2000 CSE370 - II - Combinational Logic 36

Mapping between canonical forms

! Minterm to maxterm conversion
" use maxterms whose indices do not appear in minterm expansion
" e.g., F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4)

! Maxterm to minterm conversion
" use minterms whose indices do not appear in maxterm expansion
" e.g., F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7)

! Minterm expansion of F to minterm expansion of F�
" use minterms whose indices do not appear
" e.g., F(A,B,C) = Σm(1,3,5,6,7) F�(A,B,C) = Σm(0,2,4)

! Maxterm expansion of F to maxterm expansion of F�
" use maxterms whose indices do not appear
" e.g., F(A,B,C) = ΠM(0,2,4) F�(A,B,C) = ΠM(1,3,5,6,7)

Autumn 2000 CSE370 - II - Combinational Logic 37

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should
never be encountered in practice
� "don�t care" about associated
output values, can be exploited
in minimization

Incompleteley specified functions

! Example: binary coded decimal increment by 1
" BCD digits encode the decimal digits 0 � 9 in the bit patterns 0000 � 1001

don�t care (DC) set of W

on-set of W

Autumn 2000 CSE370 - II - Combinational Logic 38

Notation for incompletely specified functions

! Don�t cares and canonical forms
" so far, only represented on-set
" also represent don�t-care-set
" need two of the three sets (on-set, off-set, dc-set)

! Canonical representations of the BCD increment by 1 function:

" Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
" Z = Σ [m(0,2,4,6,8) + d(10,11,12,13,14,15)]

" Z = M1 � M3 � M5 � M7 � M9 � D10 � D11 � D12 � D13 � D14 � D15
" Z = Π [M(1,3,5,7,9) � D(10,11,12,13,14,15)]

Autumn 2000 CSE370 - II - Combinational Logic 39

Simplification of two-level combinational logic

! Finding a minimal sum of products or product of sums realization
" exploit don�t care information in the process

! Algebraic simplification
" not an algorithmic/systematic procedure
" how do you know when the minimum realization has been found?

! Computer-aided design tools
" precise solutions require very long computation times, especially for

functions with many inputs (> 10)
" heuristic methods employed � "educated guesses" to reduce amount of

computation and yield good if not best solutions

! Hand methods still relevant
" to understand automatic tools and their strengths and weaknesses
" ability to check results (on small examples)

Autumn 2000 CSE370 - II - Combinational Logic 40

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
� B remains

A has a different value in the two rows
� A is eliminated

F = A�B�+AB� = (A�+A)B� = B�

The uniting theorem

! Key tool to simplification: A (B� + B) = A

! Essence of simplification of two-level logic
" find two element subsets of the ON-set where only one variable changes

its value � this single varying variable can be eliminated and a single
product term used to represent both elements

Autumn 2000 CSE370 - II - Combinational Logic 41

Implementations of two-level logic

! Sum-of-products
" AND gates to form product terms (minterms)
" OR gate to form sum

! Product-of-sums
" OR gates to form sum terms (maxterms)
" AND gates to form product

Autumn 2000 CSE370 - II - Combinational Logic 42

Two-level logic using NAND gates

! Replace minterm AND gates with NAND gates

! Place compensating inversion at inputs of OR gate

Autumn 2000 CSE370 - II - Combinational Logic 43

Two-level logic using NAND gates (cont�d)

! OR gate with inverted inputs is a NAND gate
" de Morgan�s: A� + B� = (A � B)�

! Two-level NAND-NAND network
" inverted inputs are not counted
" in a typical circuit, inversion is done once and signal distributed

Autumn 2000 CSE370 - II - Combinational Logic 44

Two-level logic using NOR gates

! Replace maxterm OR gates with NOR gates

! Place compensating inversion at inputs of AND gate

Autumn 2000 CSE370 - II - Combinational Logic 45

Two-level logic using NOR gates (cont�d)

! AND gate with inverted inputs is a NOR gate
" de Morgan�s: A� � B� = (A + B)�

! Two-level NOR-NOR network
" inverted inputs are not counted
" in a typical circuit, inversion is done once and signal distributed

Autumn 2000 CSE370 - II - Combinational Logic 46

OR

NAND NAND

OR AND

NOR NOR

AND

Two-level logic using NAND and NOR gates

! NAND-NAND and NOR-NOR networks
" de Morgan�s law: (A + B)� = A� � B� (A � B)� = A� + B�
" written differently: A + B = (A� � B�)� (A � B) = (A� + B�)�

! In other words ��
" OR is the same as NAND with complemented inputs
" AND is the same as NOR with complemented inputs
" NAND is the same as OR with complemented inputs
" NOR is the same as AND with complemented inputs

Autumn 2000 CSE370 - II - Combinational Logic 47

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

Conversion between forms

! Convert from networks of ANDs and ORs to networks of NANDs and NORs
" introduce appropriate inversions ("bubbles")

! Each introduced "bubble" must be matched by a corresponding "bubble"
" conservation of inversions
" do not alter logic function

! Example: AND/OR to NAND/NAND

Autumn 2000 CSE370 - II - Combinational Logic 48

Z = [(A � B)� � (C � D)�]�

= [(A� + B�) � (C� + D�)]�

= [(A� + B�)� + (C� + D�)�]

= (A � B) + (C � D) ➼

Conversion between forms (cont�d)

! Example: verify equivalence of two forms

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

Autumn 2000 CSE370 - II - Combinational Logic 49

Step 2
conserve
"bubbles"

Step 1
conserve
"bubbles"

NOR

NOR

NOR

\A

\B

\C

\D

Z

NOR

NORA

B

C

D

Z

Conversion between forms (cont�d)

! Example: map AND/OR network to NOR/NOR network

A

B

C

D

Z

Autumn 2000 CSE370 - II - Combinational Logic 50

Z = { [(A� + B�)� + (C� + D�)�]� }�

= { (A� + B�) � (C� + D�) }�

= (A� + B�)� + (C� + D�)�

= (A � B) + (C � D) ➼

Conversion between forms (cont�d)

! Example: verify equivalence of two forms

A

B

C

D

Z

NOR

NOR

NOR

\A

\B

\C

\D

Z

Autumn 2000 CSE370 - II - Combinational Logic 51

A
B
C

D
E

F
G

X

Multi-level logic

! x = A D F + A E F + B D F + B E F + C D F + C E F + G
" reduced sum-of-products form � already simplified
" 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even exist!)
" 25 wires (19 literals plus 6 internal wires)

! x = (A + B + C) (D + E) F + G
" factored form � not written as two-level S-o-P
" 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
" 10 wires (7 literals plus 3 internal wires)

Autumn 2000 CSE370 - II - Combinational Logic 52

Level 1 Level 2 Level 3 Level 4

original
AND-OR
network

A

C
D

B

B
\C

F

introduction and
conservation of

bubbles A

C
D

B

B
\C

F

redrawn in terms
of conventional

NAND gates A

C
D

\B

B
\C

F

Conversion of multi-level logic to NAND gates

! F = A (B + C D) + B C�

Autumn 2000 CSE370 - II - Combinational Logic 53

Level 1 Level 2 Level 3 Level 4

A

C
D

B

B
\C

Foriginal
AND-OR
network

introduction and
conservation of

bubbles A

C

D
B

B

\C

F

redrawn in terms
of conventional

NOR gates
\A

\C
\D

B

\B
C

F

Conversion of multi-level logic to NORs

! F = A (B + C D) + B C�

Autumn 2000 CSE370 - II - Combinational Logic 54

A

X
B
C
D

F
(a)

original circuit

A

X
B
C
D

F
(b)

add double bubbles at inputs

\D

A

\X
B
C

F(c)

distribute bubbles
some mismatches

\D

A
X

B
C

F
\X

(d)

insert inverters to fix mismatches

Conversion between forms

! Example

Autumn 2000 CSE370 - II - Combinational Logic 55

&

&
+2x2 AOI gate

symbol

&

&
+3x2 AOI gate

symbol

NAND NAND Invert

possible implementation

A
B

C
D

Z

AND OR Invert

logical concept

A
B

C
D

Z

AND-OR-invert gates

! AOI function: three stages of logic � AND, OR, Invert
" multiple gates "packaged" as a single circuit block

Autumn 2000 CSE370 - II - Combinational Logic 56

&

&
+

A�

B�
A
B

F

Conversion to AOI forms

! General procedure to place in AOI form
" compute the complement of the function in sum-of-products form
" by grouping the 0s in the Karnaugh map

! Example: XOR implementation �� A xor B = A� B + A B�
" AOI form: F = (A� B� + A B)�

Autumn 2000 CSE370 - II - Combinational Logic 57

each implemented in a single 2x2 AOI gate

Examples of using AOI gates

! Example:
" F = B C� + A C� + A B
" F� = A� B� + A� C + B� C
" Implemented by 2-input 3-stack AOI gate

" F = (A + B) (A + C�) (B + C�)
" F� = (B� + C) (A� + C) (A� + B�)
" Implemented by 2-input 3-stack OAI gate

! Example: 4-bit equality function
" Z = (A0 B0 + A0� B0�)(A1 B1 + A1� B1�)(A2 B2 + A2� B2�)(A3 B3 + A3� B3�)

Autumn 2000 CSE370 - II - Combinational Logic 58

high if A0 ≠ B0
low if A0 = B0

if all inputs are low
then Ai = Bi, i=0,...,3

output Z is high

conservation of bubbles

A0
B0

A1
B1

A2
B2

A3
B3

&

&
+

&

&
+

&

&
+

&

&
+

NOR Z

Examples of using AOI gates (cont�d)

! Example: AOI implementation of 4-bit equality function

Autumn 2000 CSE370 - II - Combinational Logic 59

Summary for multi-level logic

! Advantages
" circuits may be smaller
" gates have smaller fan-in
" circuits may be faster

! Disadvantages
" more difficult to design
" tools for optimization are not as good as for two-level
" analysis is more complex

Autumn 2000 CSE370 - II - Combinational Logic 60

Time behavior of combinational networks

! Waveforms
" visualization of values carried on signal wires over time
" useful in explaining sequences of events (changes in value)

! Simulation tools are used to create these waveforms
" input to the simulator includes gates and their connections
" input stimulus, that is, input signal waveforms

! Some terms
" gate delay � time for change at input to cause change at output

⌧min delay � typical/nominal delay � max delay
⌧careful designers design for the worst case

" rise time � time for output to transition from low to high voltage
" fall time � time for output to transition from high to low voltage
" pulse width � time that an output stays high or stays low between changes

Autumn 2000 CSE370 - II - Combinational Logic 61

F is not always 0
pulse 3 gate-delays wide

D remains high for
three gate delays after

A changes from low to high

F
A B C D

Momentary changes in outputs

! Can be useful � pulse shaping circuits

! Can be a problem � incorrect circuit operation (glitches/hazards)

! Example: pulse shaping circuit
" A� � A = 0
" delays matter in function

Autumn 2000 CSE370 - II - Combinational Logic 62

initially
undefined

close switch

open switch

+

open
switch

resistor
A B

C
D

Oscillatory behavior

! Another pulse shaping circuit

Autumn 2000 CSE370 - II - Combinational Logic 63

Hardware description languages

! Describe hardware at varying levels of abstraction

! Structural description
" textual replacement for schematic
" hierarchical composition of modules from primitives

! Behavioral/functional description
" describe what module does, not how
" synthesis generates circuit for module

! Simulation semantics

Autumn 2000 CSE370 - II - Combinational Logic 64

HDLs

! Abel (circa 1983) - developed by Data-I/O
" targeted to programmable logic devices
" not good for much more than state machines

! ISP (circa 1977) - research project at CMU
" simulation, but no synthesis

! Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
" similar to Pascal and C
" delays is only interaction with simulator
" fairly efficient and easy to write
" IEEE standard

! VHDL (circa 1987) - DoD sponsored standard
" similar to Ada (emphasis on re-use and maintainability)
" simulation semantics visible
" very general but verbose
" IEEE standard

Autumn 2000 CSE370 - II - Combinational Logic 65

Verilog

! Supports structural and behavioral descriptions

! Structural
" explicit structure of the circuit
" e.g., each logic gate instantiated and connected to others

! Behavioral
" program describes input/output behavior of circuit
" many structural implementations could have same behavior
" e.g., different implementation of one Boolean function

! We�ll only be using behavioral Verilog in DesignWorks
" rely on schematic when we want structural descriptions

Autumn 2000 CSE370 - II - Combinational Logic 66

module xor_gate (out, a, b);
input a, b;
output out;
wire abar, bbar, t1, t2;

inverter invA (abar, a);
inverter invB (bbar, b);
and_gate and1 (t1, a, bbar);
and_gate and2 (t2, b, abar);
or_gate or1 (out, t1, t2);

endmodule

Structural model

Autumn 2000 CSE370 - II - Combinational Logic 67

module xor_gate (out, a, b);
input a, b;
output out;
reg out;

assign #6 out = a ^ b;

endmodule

Simple behavioral model

! Continuous assignment

delay from input change
to output change

simulation register -
keeps track of
value of signal

Autumn 2000 CSE370 - II - Combinational Logic 68

module xor_gate (out, a, b);
input a, b;
output out;
reg out;

always @(a or b) begin
#6 out = a ^ b;

end

endmodule

Simple behavioral model

! always block

specifies when block is executed
ie. triggered by which signals

Autumn 2000 CSE370 - II - Combinational Logic 69

module stimulus (x, y);
output x, y;
reg [1:0] cnt;

initial begin
cnt = 0;
repeat (4) begin
#10 cnt = cnt + 1;
$display ("@ time=%d, x=%b, y=%b, cnt=%b",
$time, x, y, cnt); end

#10 $finish;
end

assign x = cnt[1];
assign y = cnt[0];

endmodule

Driving a simulation

2-bit vector

initial block executed
only once at start
of simulation

directive to stop
simulation

print to a console

Autumn 2000 CSE370 - II - Combinational Logic 70

Complete Simulation

! Instantiate stimulus component and device to test in a schematic

x
y

a

b

z

Autumn 2000 CSE370 - II - Combinational Logic 71

module Compare1 (A, B, Equal, Alarger, Blarger);
input A, B;
output Equal, Alarger, Blarger;

assign #5 Equal = (A & B) | (~A & ~B);
assign #3 Alarger = (A & ~B);
assign #3 Blarger = (~A & B);

endmodule

Comparator Example

Autumn 2000 CSE370 - II - Combinational Logic 72

module life (n0, n1, n2, n3, n4, n5, n6, n7, self, out);
input n0, n1, n2, n3, n4, n5, n6, n7, self;
output out;
reg out;
reg [7:0] neighbors;
reg [3:0] count;
reg [3:0] i;

assign neighbors = {n7, n6, n5, n4, n3, n2, n1, n0};

always @(neighbors or self) begin
count = 0;
for (i = 0; i < 8; i = i+1) count = count + neighbors[i];
out = (count == 3);
out = out | ((self == 1) & (count == 2));

end

endmodule

More Complex Behavioral Model

Autumn 2000 CSE370 - II - Combinational Logic 73

Hardware Description Languages vs.
Programming Languages

! Program structure
" instantiation of multiple components of the same type
" specify interconnections between modules via schematic
" hierarchy of modules (only leaves can be HDL in DesignWorks)

! Assignment
" continuous assignment (logic always computes)
" propagation delay (computation takes time)
" timing of signals is important (when does computation have its effect)

! Data structures
" size explicitly spelled out - no dynamic structures
" no pointers

! Parallelism
" hardware is naturally parallel (must support multiple threads)
" assignments can occur in parallel (not just sequentially)

Autumn 2000 CSE370 - II - Combinational Logic 74

Hardware Description Languages and
Combinational Logic

! Modules - specification of inputs, outputs, bidirectional, and internal signals

! Continuous assignment - a gate�s output is a function of its inputs at all
times (doesn�t need to wait to be "called")

! Propagation delay- concept of time and delay in input affecting gate output

! Composition - connecting modules together with wires

! Hierarchy - modules encapsulate functional blocks

! Specification of don�t care conditions (accomplished by setting output to �x�)

Autumn 2000 CSE370 - II - Combinational Logic 75

Combinational logic summary

! Logic functions, truth tables, and switches
" NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

! Axioms and theorems of Boolean algebra
" proofs by re-writing and perfect induction

! Gate logic
" networks of Boolean functions and their time behavior

! Canonical forms
" two-level and incompletely specified functions

! Simplification
" two-level simplification

! Later
" automation of simplification
" multi-level logic
" design case studies
" time behavior

