
Autumn 2000 CSE370 - IV - Combinational Logic Optimization 1

Combinational logic optimization

! Alternate representations of Boolean functions
" cubes
" karnaugh maps

! Simplification
" two-level simplification
" exploiting don�t cares
" algorithm for simplification

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 2

Simplification of two-level combinational logic

! Finding a minimal sum of products or product of sums realization
" exploit don't care information in the process

! Algebraic simplification
" not an algorithmic/systematic procedure
" how do you know when the minimum realization has been found?

! Computer-aided design tools
" precise solutions require very long computation times, especially for

functions with many inputs (> 10)
" heuristic methods employed � "educated guesses" to reduce amount of

computation and yield good if not best solutions

! Hand methods still relevant
" to understand automatic tools and their strengths and weaknesses
" ability to check results (on small examples)

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 3

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
� B remains

A has a different value in the two rows
� A is eliminated

F = A'B'+AB' = (A'+A)B' = B'

The uniting theorem

! Key tool to simplification: A (B' + B) = A

! Essence of simplification of two-level logic
" find two element subsets of the ON-set where only one variable changes

its value � this single varying variable can be eliminated and a single
product term used to represent both elements

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 4

1-cube
X

0 1

Boolean cubes

! Visual technique for indentifying when the uniting theorem can be applied

! n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W
X

Y
Z

0000

1111

1000

0111

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 5

A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes)
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

Mapping truth tables onto Boolean cubes

! Uniting theorem combines two "faces" of a cube into a larger "face"

! Example:

A

B

11

00

01

10

F

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 6

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(A'+A)BCin

AB(Cin'+Cin)

A(B+B')Cin

Cout = BCin+AB+ACin

the on-set is completely covered by
the combination (OR) of the subcubes
of lower dimensionality - note that �111�
is covered three times

Three variable example

! Binary full-adder carry-out logic

A

B C

000

111

101

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 7

F(A,B,C) = Σm(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable
i.e., 3 dimensions � 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Higher dimensional cubes

! Sub-cubes of higher dimension than 2

A

B C

000

111

101

100

001

010

011
110

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 8

m-dimensional cubes in a n-dimensional
Boolean space

! In a 3-cube (three variables):
" a 0-cube, i.e., a single node, yields a term in 3 literals
" a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
" a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
" a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

! In general,
" an m-subcube within an n-cube (m < n) yields a term with n � m literals

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 9

A B F

0 0 1

0 1 0

1 0 1

1 1 0

Karnaugh maps

! Flat map of Boolean cube
"wrap�around at edges
" hard to draw and visualize for more than 4 dimensions
" virtually impossible for more than 6 dimensions

! Alternative to truth-tables to help visualize adjacencies
" guide to applying the uniting theorem
" on-set elements with only one variable changing value are adjacent

unlike the situation in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 10

Karnaugh maps (cont�d)

! Numbering scheme based on Gray�code
" e.g., 00, 01, 11, 10
" only a single bit changes in code for adjacent map cells

0 2

1 3

00 01
AB

C
0

1
6 4

7 5

11 10

C

B

A

0 2

1 3

6 4

7 5
C

B

A

0 4

1 5

12 8

13 9 D

A

3 7

2 6

15 11

14 10
C

B 13 = 1101= ABC�D

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 11

Adjacencies in Karnaugh maps

! Wrap from first to last column

! Wrap top row to bottom row

000 010

001 011

110 100

111 101C

B

A

A

B C

000

111

101

100

001

010

011
110

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 12

obtain the
complement
of the function
by covering 0s
with subcubes

Karnaugh map examples

! F =

! Cout =

! f(A,B,C) = Σm(0,4,6,7)

0 0

0 1

1 0

1 1Cin

B

A

1 1

0 0B

A

1 0

0 0

0 1

1 1C

B

A

B�

AB

AC

+ ACin + BCin

+ B�C� + AB�

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 13

F(A,B,C) = Σm(0,4,5,7)

F'(A,B,C) = Σ m(1,2,3,6)

F' simply replace 1's with 0's and vice versa

G(A,B,C) =

More Karnaugh map examples

0 0

0 0

1 1

1 1C

B

A

1 0

0 0

0 1

1 1C

B

A

0 1

1 1

1 0

0 0C

B

A

A

= AC + B’C’

= BC’ + A’C

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 14

C + B�D�

find the smallest number of the largest possible
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

Karnaugh map: 4-variable example

! F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F =

D

A

B

A
B

C
D

0000

1111

1000

0111
1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

+ A�BD

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 15

+ B�C�D

Karnaugh maps: don�t cares

! f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
"without don't cares

⌧f =

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A�D

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 16

Karnaugh maps: don�t cares (cont�d)

! f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
" f = A'D + B'C'D without don't cares
" f = with don't cares

don't cares can be treated as
1s or 0s

depending on which is more
advantageous

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A'D

by using don't care as a "1"
a 2-cube can be formed
rather than a 1-cube to cover
this node

+ C'D

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 17

Activity

! Minimize the function F = Σ m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

F = AC� +
A�C +
BC +
AB +
A�B�D� +
B�C�D�

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

F = BC + A�B�D� + B�C�D�

F = A�C + AB + B�C�D�

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 18

we'll need a 4-variable Karnaugh map
for each of the 3 output functions

Design example: two-bit comparator

block diagram

LT
EQ
GT

A B < C D
A B = C D
A B > C D

A
B
C
D

N1

N2

A B C D LT EQ GT
0 0 0 0 0 1 0

0 1 1 0 0
1 0 1 0 0
1 1 1 0 0

0 1 0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 1 0 0

1 0 0 0 0 0 1
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

1 1 0 0 0 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0

and
truth table

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 19

A' B' D + A' C + B' C D

B C' D' + A C' + A B D'

LT =

EQ =

GT =

K-map for EQK-map for LT K-map for GT

Design example: two-bit comparator (cont�d)

0 0

1 0

0 0

0 0
D

A

1 1

1 1

0 1

0 0

B

C

1 0

0 1

0 0

0 0
D

A

0 0

0 0

1 0

0 1

B

C

0 1

0 0

1 1

1 1
D

A

0 0

0 0

0 0

1 0

B

C

= (A xnor C) � (B xnor D)

LT and GT are similar (flip A/C and B/D)

A' B' C' D' + A' B C' D + A B C D + A B' C D�

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 20

two alternative
implementations of EQ
with and without XOR

XNOR is implemented with
at least 3 simple gates

A B C D

EQ

EQ

Design example: two-bit comparator (cont�d)

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 21

block diagram
and

truth table

4-variable K-map
for each of the 4
output functions

A2 A1 B2 B1 P8 P4 P2 P1
0 0 0 0 0 0 0 0

0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0

0 1 0 0 0 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 1

1 0 0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 0

1 1 0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 1 0
1 1 1 0 0 1

Design example: 2x2-bit multiplier

P1
P2
P4
P8

A1
A2
B1
B2

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 22

K-map for P8 K-map for P4

K-map for P2 K-map for P1

Design example: 2x2-bit multiplier (cont�d)

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

0 1

1 1

A1

B2

0 0

0 1

0 0

1 0
B1

A2

0 1

0 0

1 0

0 0

A1

B2

0 0

0 0

0 0

1 1
B1

A2

0 1

0 1

0 1

1 0

A1

B2

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

1 0

0 0

A1

B2 P8 = A2A1B2B1

P4 = A2B2B1'
+ A2A1'B2

P2 = A2'A1B2
+ A1B2B1'
+ A2B2'B1
+ A2A1'B1

P1 = A1B1

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 23

I8 I4 I2 I1 O8 O4 O2 O1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X Xblock diagram

and
truth table

4-variable K-map for each of
the 4 output functions

O1
O2
O4
O8

I1
I2
I4
I8

Design example: BCD increment by 1

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 24

O8 = I4 I2 I1 + I8 I1'

O4 = I4 I2' + I4 I1' + I4� I2 I1

O2 = I8� I2� I1 + I2 I1'

O1 = I1'

O8 O4

O2 O1

Design example: BCD increment by 1 (cont�d)

0 0

0 0

X 1

X 0
I1

I8

0 1

0 0

X X

X X

I4

I2

0 0

1 1

X 0

X 0
I1

I8

0 0

1 1

X X

X X

I4

I2

0 1

0 1

X 0

X 0
I1

I8

1 0

0 1

X X

X X

I4

I2

1 1

0 0

X 1

X 0
I1

I8

0 0

1 1

X X

X X

I4

I2

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 25

Definition of terms for two-level simplification

! Implicant
" single element of ON-set or DC-set or any group of these elements that

can be combined to form a subcube

! Prime implicant
" implicant that can't be combined with another to form a larger subcube

! Essential prime implicant
" prime implicant is essential if it alone covers an element of ON-set
" will participate in ALL possible covers of the ON-set
" DC-set used to form prime implicants but not to make implicant essential

! Objective:
" grow implicant into prime implicants

(minimize literals per term)
" cover the ON-set with as few prime implicants as possible

(minimize number of product terms)

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 26

0 X

1 1

1 0

1 0
D

A

1 0

0 0

1 1

1 1

B

C

5 prime implicants:
BD, ABC', ACD, A'BC, A'C'D

Examples to illustrate terms

0 0

1 1

1 0

1 0
D

A

0 1

0 1

1 1

0 0

B

C

6 prime implicants:
A'B'D, BC', AC, A'C'D, AB, B'CD

minimum cover: AC + BC' + A'B'D

essential

minimum cover: 4 essential implicants

essential

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 27

Algorithm for two-level simplification

! Algorithm: minimum sum-of-products expression from a Karnaugh map

" Step 1: choose an element of the ON-set
" Step 2: find "maximal" groupings of 1s and Xs adjacent to that element

⌧consider top/bottom row, left/right column, and corner adjacencies
⌧this forms prime implicants (number of elements always a power of 2)

" Repeat Steps 1 and 2 to find all prime implicants

" Step 3: revisit the 1s in the K-map
⌧ if covered by single prime implicant, it is essential, and participates in final cover
⌧1s covered by essential prime implicant do not need to be revisited

" Step 4: if there remain 1s not covered by essential prime implicants
⌧select the smallest number of prime implicants that cover the remaining 1s

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 28

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

3 primes around AB'C'D'

Algorithm for two-level simplification (example)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 primes around A'BC'D'

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 primes around ABC'D

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

minimum cover (3 primes)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 essential primes

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 29

Activity

Autumn 2000 CSE370 - IV - Combinational Logic Optimization 30

Combinational logic optimization summary

! Alternate representations of Boolean functions
" cubes
" karnaugh maps

! Simplification
" two-level simplification

! Later (in CSE 467)
" automation of simplification
" optimization of multi-level logic
" verification/equivalence

