Combinational logic optimization

H Alternate representations of Boolean functions
囚 cubes
囚 karnaugh maps
H Simplification
囚 two－level simplification
® exploiting don＇t cares
囚 algorithm for simplification

Simplification of two－level combinational logic

\＆Finding a minimal sum of products or product of sums realization
囚 exploit don＇t care information in the process
If Algebraic simplification
囚 not an algorithmic／systematic procedure
© how do you know when the minimum realization has been found？
H Computer－aided design tools
囚 precise solutions require very long computation times，especially for functions with many inputs（＞10）
囚 heuristic methods employed－＂educated guesses＂to reduce amount of computation and yield good if not best solutions
\％Hand methods still relevant
® to understand automatic tools and their strengths and weaknesses囚 ability to check results（on small examples）

The uniting theorem

If Key tool to simplification: $A\left(B^{\prime}+B\right)=A$
\mathscr{H} Essence of simplification of two-level logic
® find two element subsets of the ON-set where only one variable changes its value - this single varying variable can be eliminated and a single product term used to represent both elements

$$
\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{AB} \mathrm{~B}^{\prime}=\left(\mathrm{A}^{\prime}+\mathrm{A}\right) \mathrm{B}^{\prime}=\mathrm{B}^{\prime}
$$

Boolean cubes

\& Visual technique for indentifying when the uniting theorem can be applied
\mathscr{H} n input variables $=\mathrm{n}$-dimensional "cube"

Mapping truth tables onto Boolean cubes

H Uniting theorem combines two "faces" of a cube into a larger "face"
\& Example:

Three variable example

H Binary full-adder carry-out logic

A	B	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

the on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

$$
\text { Cout }=B C i n+A B+A C i n
$$

Higher dimensional cubes

If Sub－cubes of higher dimension than 2

m－dimensional cubes in a n－dimensional Boolean space

H In a 3－cube（three variables）：
\triangle a 0－cube，i．e．，a single node，yields a term in 3 literals
囚 a 1－cube，i．e．，a line of two nodes，yields a term in 2 literals
囚 a 2－cube，i．e．，a plane of four nodes，yields a term in 1 literal
囚 a 3－cube，i．e．，a cube of eight nodes，yields a constant term＂1＂
H In general，
囚 an m －subcube within an n －cube $(\mathrm{m}<\mathrm{n})$ yields a term with $\mathrm{n}-\mathrm{m}$ literals

Karnaugh maps

H Flat map of Boolean cube
囚 wrap－around at edges
囚 hard to draw and visualize for more than 4 dimensions
囚 virtually impossible for more than 6 dimensions
H Alternative to truth－tables to help visualize adjacencies
囚 guide to applying the uniting theorem
囚 on－set elements with only one variable changing value are adjacent unlike the situation in a linear truth－table

A	B	F
0	0	1
0	1	0
1	0	1
1	1	0

Karnaugh maps（cont＇d）

It Numbering scheme based on Gray－code
囚e．g．，00，01，11， 10
囚 only a single bit changes in code for adjacent map cells

$$
13=1101=A B C^{\prime} D
$$

Adjacencies in Karnaugh maps

\% Wrap from first to last column
H Wrap top row to bottom row

Karnaugh map examples

More Karnaugh map examples

$$
\mathrm{G}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\mathrm{A}
$$

$F(A, B, C)=\Sigma m(0,4,5,7)=A C+B^{\prime} C^{\prime}$

F' simply replace 1 's with 0 's and vice versa
$F^{\prime}(A, B, C)=\sum m(1,2,3,6)=B C^{\prime}+A^{\prime} C$

Karnaugh map: 4-variable example

H $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,2,3,5,6,7,8,10,11,14,15)$
$F=C+A^{\prime} B D+B^{\prime} D^{\prime}$

find the smallest number of the largest possible subcubes to cover the ON-set (fewer terms with fewer inputs per term)

Karnaugh maps：don＇t cares

H $f(A, B, C, D)=\Sigma m(1,3,5,7,9)+d(6,12,13)$
囚 without don＇t cares

$$
\text { 区f }=A^{\prime} D+B^{\prime} C^{\prime} D
$$

Karnaugh maps：don＇t cares（cont＇d）

Hf $f(A, B, C, D)=\Sigma m(1,3,5,7,9)+d(6,12,13)$

囚f＝A＇D＋B＇C＇D
囚f＝A＇D＋C＇D
without don＇t cares with don＇t cares

by using don＇t care as a＂1＂ a 2－cube can be formed rather than a 1－cube to cover this node
don＇t cares can be treated as 1s or 0s
depending on which is more advantageous

Activity

H Minimize the function $F=\Sigma m(0,2,7,8,14,15)+d(3,6,9,12,13)$

Design example: two-bit comparator

we'll need a 4-variable Karnaugh map for each of the 3 output functions

Design example: two-bit comparator (cont'd)

K-map for LT

K-map for EQ

$\mathrm{LT}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{B}^{\prime} C D$
$E Q=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B C^{\prime} D+A B C D+A B^{\prime} C D^{\prime}=(A$ xnor $C) \cdot(B$ xnor $D)$
GT = BC' $\mathrm{D}^{\prime}+\mathrm{AC}^{\prime}+\mathrm{AB} \mathrm{D}^{\prime}$
LT and GT are similar (flip A/C and B/D)

Design example: two-bit comparator (cont'd)

two alternative implementations of EQ with and without XOR

XNOR is implemented with at least 3 simple gates

Design example: 2x2-bit multiplier

block diagram and truth table

4-variable K-map for each of the 4 output functions

Design example: 2x2-bit multiplier (cont'd)

Design example: BCD increment by 1

block diagram and truth table

I8	I4	I2	I1	O8	O4	O2	O1
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

4-variable K-map for each of the 4 output functions

Design example: BCD increment by 1 (cont'd)

$\mathrm{O} 8=\mathrm{I} 4 \mathrm{I} 2 \mathrm{I} 1+\mathrm{I} 8 \mathrm{I} 1^{\prime}$
O4 = I4 I2' + I4 I1' + I4' I2 I1
$\mathrm{O} 2=\mathrm{I} 8^{\prime} \mathrm{I} 2^{\prime} \mathrm{I} 1+\mathrm{I} 2 \mathrm{I} 1^{\prime}$
O1 = I1'

2

Definition of terms for two-level simplification

H Implicant
® single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube
\& Prime implicant
® implicant that can't be combined with another to form a larger subcube
H Essential prime implicant
® prime implicant is essential if it alone covers an element of ON-set
© will participate in ALL possible covers of the ON-set
® DC-set used to form prime implicants but not to make implicant essential
\& Objective:
© grow implicant into prime implicants
(minimize literals per term)
© cover the ON-set with as few prime implicants as possible (minimize number of product terms)

Examples to illustrate terms

6 prime implicants:

minimum cover: $A C+B C^{\prime}+A^{\prime} B^{\prime} D$

Algorithm for two－level simplification

If Algorithm：minimum sum－of－products expression from a Karnaugh map
© Step 1：choose an element of the ON－set
® Step 2：find＂maximal＂groupings of 1 s and Xs adjacent to that element区consider top／bottom row，left／right column，and corner adjacencies区this forms prime implicants（number of elements always a power of 2）

Repeat Steps 1 and 2 to find all prime implicants
© Step 3：revisit the 1s in the K－map
区if covered by single prime implicant，it is essential，and participates in final cover区1s covered by essential prime implicant do not need to be revisited
\boxtimes Step 4：if there remain 1s not covered by essential prime implicants
区select the smallest number of prime implicants that cover the remaining is

Algorithm for two－level simplification（example）

3 primes around $\mathbf{A B}^{\prime} \mathbf{C}^{\prime} \mathbf{D}^{\prime}$

2 primes around $A^{\prime} B^{\prime} D^{\prime}$

2 essential primes

2 primes around $A B C^{\prime} D$

minimum cover（3 primes）

Activity

Combinational logic optimization summary

H Alternate representations of Boolean functions
囚 cubes
囚 karnaugh maps
\＆Simplification
® two－level simplification
H Later（in CSE 467）
囚 automation of simplification
囚 optimization of multi－level logic囚 verification／equivalence

