

				i desta								
	<u>uth table</u> I show don't cares											
ቻ Ch	Choose implementation target	Α	В	С	D	C0	C1	C2	C3	C4	C5	C6
	I if ROM, we are done	0	0	0	0	1	1	1	1	1	1	0
	☐ don't cares imply PAL/PLA	0	0	0	1	0	1	1	0	0	0	0
	may be attractive	0	0	1	0	1	1	0	1	1	0	1
₩ Fol	low implementation procedure	0	0	1	1	1	1	1	1		0	1
☐ minimization using K-maps		0	1	0	0	0	1	1	-		1	1
	0	1	0	1	1	0	1	1	0	1	1	
		0	1	1	0	1	0		1		1	1
		0	1	1	1	1	1	1	0	0	0	0
		1	0	0	0	1	1	-	1	_	1	1
		1	0	0	1	1	1	1	0	0	1	1
		1	0	1	-	-	-	-	-	-	-	-
		1	T	-	-	-	-	-	-	-	-	-

 ★ Discrete gates △ 28 = m8' m4' m2 m1' leap' △ 29 = m8' m4' m2 m1' leap △ 30 = m8' m4 m1' + m8 m1 △ 31 = m8' m1 + m8 m1' ★ Can translate to S-o-P or P-o-S 	month 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 111-	leap 0 1 -	28 - 0 1 0 0 0 0 0 0 0 0 0 0 0 - -	29 - 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	30 0 0 0 0 1 0 1 0 0 1 0 0 1 0 - -	31 - 1 0 1 0 1 0 1 0 1 0 1 - -
---	---	---	--	---	--	--

2s complement a	ddition	and su	btraction	
 ¥ Simple addition and sub ⊠ simple scheme mak integer number system 	es 2s compl		rtually unanimous	choice for
4 <u>+3</u> 7	0100 <u>0011</u> 0111	- 4 <u>+ (- 3)</u> - 7	1100 <u>110</u> 1 11001	
4 3 1	0100 <u>110</u> 1 10001	- 4 <u>+ 3</u> - 1		
Autumn 2000 CSE	370 - V - Combin	ational Logic Case	Studies	29

Г

Overflow cor	ditions			
육 Overflow when ca	arry into sign bit position	n is not equa	al to carry-out	
5 _ <u>3</u> _8	0 1 1 1 0 1 0 1 <u>0 0 1 1</u> 1 0 0 0	-7 -2 7	1 0 0 0 1 0 0 1 <u>1 1 1 0</u> 1 0 1 1 1	
overflow		overflow		
5 2 	0 0 0 0 0 1 0 1 <u>0 0 1 0</u> 0 1 1 1	– 3 <u>– 5</u> – 8 no overflo	1 1 1 1 1 1 0 1 <u>1 0 1 1</u> 1 1 0 0 0 w	
Autumn 2000	CSE370 - V - Combinational L			32

Arithmeti	c logic unit des	ign specification	
M = 0, logical	bitwise operations		
S1 S0	Function	Comment	
0 0	Fi = Ai	input Ai transferred to output	
0 1	Fi = not Ai	complement of Ai transferred to output	
1 0	Fi = Ai xor Bi	compute XOR of Ai, Bi	
1 1	Fi = Ai xnor Bi	compute XNOR of Ai, Bi	
M = 1, C0 = 0), arithmetic operations		
0 0	F = A	input A passed to output	
0 1	F = not A	complement of A passed to output	
1 0	•	sum of A and B	
1 1	F = (not A) plus B	sum of B and complement of A	
M = 1, C0 = 1	, arithmetic operations		
0 0	F = A plus 1	increment A	
0 1	F = (not A) plus 1	twos complement of A	
1 0	F = A plus B plus 1	increment sum of A and B	
1 1	F = (not A) plus B plus 1	B minus A	
	logical and arit	hmetic operations	
I	not all operations appear usef	ul, but "fall out" of internal logic	
Autumn 2000	CSE370 - V - Combinatio	onal Logic Case Studies	44

