Combinational logic design case studies

H General design procedure
\％Case studies
$\triangle B C D$ to 7－segment display controller
囚 logical function unit
囚 process line controller
囚 calendar subsystem
H Arithmetic circuits
© integer representations
囚 addition／subtraction
囚 arithmetic／logic units

General design procedure for combinational logic

\＆1．Understand the problem
囚 what is the circuit supposed to do？
\triangle write down inputs（data，control）and outputs
® draw block diagram or other picture
\mathscr{H} 2．Formulate the problem using a suitable design representation
囚 truth table or waveform diagram are typical
＠may require encoding of symbolic inputs and outputs
\＆3．Choose implementation target
囚 ROM，PAL，PLA
囚 mux，decoder and OR－gate
囚 discrete gates
\＆4．Follow implementation procedure
囚 K－maps for two－level，multi－level
囚 design tools and hardware description language（e．g．，Verilog）

BCD to 7－segment display controller

H Understanding the problem
© input is a 4 bit bcd digit（A，B，C，D）
囚 output is the control signals for the display（7 outputs C0－C6）
\＆Block diagram

Formalize the problem

H Truth table
囚 show don＇t cares
\＆Choose implementation target
囚 if ROM，we are done

A	B	C	D	C0	C1 1	C2	C3	C4 4	C5	C6
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	-	-	-	-	-	-	-	-
1	1	-	-	-	-	-	-	-	-	-

Implementation as minimized sum－of－products

\＆ 15 unique product terms when minimized individually

$$
\begin{aligned}
& C 0=A+B D+C+B^{\prime} D^{\prime} \\
& \mathrm{C} 1=\mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{CD}+\mathrm{B}^{\prime} \\
& \mathrm{C} 2=\mathrm{B}+\mathrm{C}^{\prime}+\mathrm{D} \\
& C 3=B^{\prime} D^{\prime}+C D^{\prime}+B C^{\prime} D+B^{\prime} C \\
& \mathrm{C} 4=\mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{C} \mathrm{D}^{\prime} \\
& \mathrm{C} 5=\mathrm{A}+\mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{B} \mathrm{D}^{\prime}+\mathrm{BC}^{\prime} \\
& C 6=A+C D^{\prime}+B C^{\prime}+B^{\prime} C
\end{aligned}
$$

Implementation as minimized S－o－P（cont＇d）

\＆Can do better
囚 9 unique product terms（instead of 15）
囚 share terms among outputs
囚 each output not necessarily in minimized form

$C 0=A+B D+C+B^{\prime} D^{\prime}$
$\mathrm{C} 1=\mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{CD}+\mathrm{B}^{\prime}$
$C 2=B+C^{\prime}+D$
$C 3=B^{\prime} D^{\prime}+C D^{\prime}+B C^{\prime} D+B^{\prime} C$
$C 4=B^{\prime} D^{\prime}+C D^{\prime}$
$C 5=A+C^{\prime} D^{\prime}+B D^{\prime}+B C^{\prime}$
$C 6=A+C D^{\prime}+B C^{\prime}+B^{\prime} C$

$$
\begin{aligned}
& C 0=B C^{\prime} D+C D+B^{\prime} D^{\prime}+B C D^{\prime}+A \\
& C 1=B^{\prime} D+C^{\prime} D^{\prime}+C D+B^{\prime} D^{\prime} \\
& C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+C D+B C D^{\prime}+D^{\prime} D \\
& C 3=B C^{\prime} D+B^{\prime} D+B^{\prime} D^{\prime}+B C D^{\prime} \\
& C 4=B^{\prime} D^{\prime}+B C D^{\prime} \\
& C 5=B C^{\prime} D+C^{\prime} D^{\prime}+A+B C D^{\prime}+B C D^{\prime}+A \\
& C 6=B^{\prime} C+B C^{\prime}+B C D^{\prime}+A
\end{aligned}
$$

PLA implementation

PAL implementation/Discrete gate implementation

H Limit of 4 product terms per output
® decomposition of functions with larger number of terms
囚 do not share terms in PAL anyway
(although there are some with some shared terms)

$$
\begin{aligned}
& C 2=B+C^{\prime}+D \\
& C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+C D+B C D^{\prime} \\
& C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+W \\
& W=C D+B C D^{\prime} \text { need another input and another output }
\end{aligned}
$$

H decompose into multi-level logic (hopefully with CAD support)
囚 find common sub-expressions among functions

$$
\begin{aligned}
& C 0=C 3+A^{\prime} B X^{\prime}+A D Y \\
& C 1=Y+A^{\prime} C 5 '+C^{\prime} D^{\prime} C 6 \\
& C 2=C 5+A^{\prime} B^{\prime} D+A^{\prime} C D \quad X=C^{\prime}+D^{\prime} \\
& \mathrm{C} 3=\mathrm{C} 4+\mathrm{BDC5}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{X}^{\prime} \\
& Y=B^{\prime} C^{\prime} \\
& C 4=D^{\prime} Y+A^{\prime} C D^{\prime} \\
& C 5=C^{\prime} C 4+A Y+A^{\prime} B X \\
& \mathrm{C} 6=\mathrm{AC} 4+\mathrm{C} C 5+\mathrm{C} 4^{\prime} \mathrm{C} 5+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}
\end{aligned}
$$

Logical function unit

\＆Multi－purpose function block
囚 3 control inputs to specify operation to perform on operands
囚 2 data inputs for operands
囚 1 output of the same bit－width as operands

C0	C 1	C 2	Function	Comments	
0	0	0	1	always 1	
0	0	1	A＋B	logical OR	3 control inputs：C0，C1，C2
0	1	0	（A • B）＇	logical NAND	2 data inputs：A，B
0	1	1	A xor B	logical xor	1 output：F
1	0	0	A xnor B	logical xnor	
1	0	1	A B B	logical AND	
1	1	0	（A＋B）＇	logical NOR	
1	1	1	0	always 0	

Formalize the problem

choose implementation technology
5－variable K－map to discrete gates multiplexor implementation

Production line control

\％Rods of varying length（ $+/-10 \%$ ）travel on conveyor belt
囚 mechanical arm pushes rods within spec（＋／－5\％）to one side
囚 second arm pushes rods too long to other side
囚 rods that are too short stay on belt
囚 3 light barriers（light source＋photocell）as sensors囚 design combinational logic to activate the arms

H Understanding the problem
® inputs are three sensors
® outputs are two arm control signals
囚 assume sensor reads＂1＂when tripped，＂0＂otherwise
囚 call sensors A，B，C

Sketch of problem

H Position of sensors
囚 A to B distance $=$ specification -5%
囚 A to C distance $=$ specification $+5 \%$

Formalize the problem

\＆Truth table
囚 show don＇t cares

A	B	C	Function
0	0	0	do nothing
0	0	1	do nothing
0	1	0	do nothing
0	1	1	do nothing
1	0	0	too short
1	0	1	don＇t care
1	1	0	in spec
1	1	1	too long

logic implementation now straightforward
just use three 3－input AND gates
＂too short＂＝AB＇C＇
（only first sensor tripped）
＂in spec＂＝A B C＇
（first two sensors tripped）
＂too long＂＝A B C
（all three sensors tripped）

Calendar subsystem

H Determine number of days in a month（to control watch display）
囚 used in controlling the display of a wrist－watch LCD screen
囚 inputs：month，leap year flag
囚 outputs：number of days

H Use software implementation to help understand the problem

```
integer number_of_days ( month, leap_year_flag) {
    switch (month) {
        case 1: return (31);
        case 2: if (leap_year_flag == 1)
                then return (29)
                else return (28);
        case 3: return (31);
        case 4: return (30);
        case 5: return (31);
        case 6: return (30);
        case 7: return (31);
        case 8: return (31);
        case 9: return (30);
        case 10: return (31);
        case 11: return (30);
        case 12: return (31);
        default: return (0);
    }
    }
```


Formalize the problem

Ho Encoding：
囚 binary number for month： 4 bits
囚 4 wires for 28，29，30，and 31 one－hot－only one true at any time H Block diagram：

month	leap	28	29	30	31
0000	-	-	-	-	-
0001	-	0	0	0	1
0010	0	1	0	0	0
0010	1	0	1	0	0
0011	-	0	0	0	1
0100	-	0	0	1	0
0101	-	0	0	0	1
0110	-	0	0	1	0
0111	-	0	0	0	1
1000	-	0	0	0	1
1001	-	0	0	1	0
1010	-	0	0	0	1
1011	-	0	0	1	0
1100	-	0	0	0	1
1101	-	-	-	-	-
$111-$	-	-	-	-	-

Choose implementation target and perform mapping

H Discrete gates
囚 $28=m 8^{\prime} m 4^{\prime} m 2 m 1^{\prime}$ leap ${ }^{\prime}$
囚 $29=m 8^{\prime} m 4^{\prime} m 2 m 1^{\prime}$ leap
囚 $30=m 8^{\prime} \mathrm{m} 4 \mathrm{~m} 1^{\prime}+\mathrm{m} 8 \mathrm{~m} 1$
囚 $31=m 8^{\prime} m 1+m 8 m 1^{\prime}$
\＆Can translate to S－o－P or P－o－S

month	leap	28	29	30	31
0000	-	-	-	-	-
0001	-	0	0	0	1
0010	0	1	0	0	0
0010	1	0	1	0	0
0011	-	0	0	0	1
0100	-	0	0	1	0
0101	-	0	0	0	1
0110	-	0	0	1	0
0111	-	0	0	0	1
1000	-	0	0	0	1
1001	-	0	0	1	0
1010	-	0	0	0	1
1011	-	0	0	1	0
1100	-	0	0	0	1
1101	-	-	-	-	-
$111-$	-	-	-	-	-

Leap year flag

H Determine value of leap year flag given the year
\triangle For years after 1582 （Gregorian calendar reformation），
® leap years are all the years divisible by 4，
® except that years divisible by 100 are not leap years， but years divisible by 400 are leap years．
H Encoding the year：
囚 binary－easy for divisible by 4， but difficult for 100 and 400 （not powers of 2）
囚 BCD－easy for 100， but more difficult for 4 ，what about 400 ？
If Parts：
© construct a circuit that determines if the year is divisible by 4
construct a circuit that determines if the year is divisible by 100
© construct a circuit that determines if the year is divisible by 400
combine the results of the previous three steps to yield the leap year flag

Activity：divisible－by－4 circuit

H BCD coded year
区 YM8 YM4 YM2 YM1－YH8 YH4 YH2 YH1－YT8 YT4 YT2 YT1－YO8 YO4 YO2 YO1
If Only need to look at low－order two digits of the year all years ending in $00,04,08,12,16,20$ ，etc．are divisible by 4
© if tens digit is even，then divisible by 4 if ones digit is 0,4 ，or 8
if tens digit is odd，then divisible by 4 if the ones digit is 2 or 6 ．
If Translates into the following Boolean expression
（where YT1 is the year＇s tens digit low－order bit，
YO8 is the high－order bit of year＇s ones digit，etc．）：
YT1＇（YO8＇YO4＇YO2＇YO1＇＋YO8＇YO4 YO2＇YO1＇＋YO8 YO4＇YO2＇YO1＇）
＋YT1（YO8＇YO4＇YO2 YO1＇＋YO8＇YO4 YO2 YO1＇）

H Digits with values of 10 to 15 will never occur，simplify further to yield：
YT1＇YO2＇YO1＇＋YT1 YO2 YO1＇

Divisible-by-100 and divisible-by-400 circuits

H Divisible-by-100 just requires checking that all bits of two low-order digits are all 0:

YT8' YT4' YT2' YT1'

- YO8' YO4' YO2' YO1'

H Divisible-by-400 combines the divisible-by-4 (applied to the thousands and hundreds digits) and divisible-by-100 circuits
(YM1' YH2' YH1' + YM1 YH2 YH1')

- (YT8' YT4' YT2' YT1' • YO8' YO4' YO2' YO1')

Combining to determine leap year flag

\mathscr{H} Label results of previous three circuits: D4, D100, and D400

$$
\begin{aligned}
\text { leap_year_flag } & =\text { D4 }(\text { D100 } \bullet \text { D400' })^{\prime} \\
& =D 4 \cdot D 100^{\prime}+\text { D4 } \cdot \text { D400 } \\
& =D 4 \cdot D 100^{\prime}+\text { D400 }
\end{aligned}
$$

Implementation of leap year flag

Arithmetic circuits

H Excellent examples of combinational logic design
H Time vs．space trade－offs
doing things fast may require more logic and thus more space囚 example：carry lookahead logic
H Arithmetic and logic units
囚 general－purpose building blocks
© critical components of processor datapaths
囚 used within most computer instructions

Number systems

\＆Representation of positive numbers is the same in most systems
H Major differences are in how negative numbers are represented
\mathscr{H} Representation of negative numbers come in three major schemes
囚 sign and magnitude
囚 1s complement
囚 2s complement
H Assumptions
囚 we＇ll assume a 4 bit machine word
囚 16 different values can be represented
囚 roughly half are positive，half are negative

Sign and magnitude

H One bit dedicate to sign（positive or negative）

囚 sign： 0 ＝positive（or zero）， 1 ＝negative
H Rest represent the absolute value or magnitude囚 three low order bits： 0 （000）thru 7 （111）
H Range for n bits
囚 $+/-2 n-1-1$（two representations for 0 ）
\＆Cumbersome addition／subtraction
® must compare magnitudes to determine sign of result

1s complement

If If N is a positive number，then the negative of N （its 1 s complement or N^{\prime} ） is $\mathrm{N}^{\prime}=(2 \mathrm{n}-1)-\mathrm{N}$
囚 example：1s complement of 7

$$
\begin{array}{ll}
2^{4} & =10000 \\
1 & =00001 \\
2^{4}-1 & =1111 \\
7 & =\frac{0111}{1000}=-7 \text { in } 1 \text { s complement form }
\end{array}
$$

囚 shortcut：simply compute bit－wise complement（ 0111 －＞ 1000 ）

1s complement（cont＇d）

\mathscr{H} Subtraction implemented by 1 s complement and then addition
\＆Two representations of 0
囚 causes some complexities in addition
H High－order bit can act as sign bit

2s complement

H 1s complement with negative numbers shifted one position clockwise
囚 only one representation for 0
囚 one more negative number than positive number
囚 high－order bit can act as sign bit

	－1	＋0
$- 2 \longdiv { 1 1 1 1 0 0 0 0 + 1 }$		
$-31110 \quad 0001$		
1101		
－4	1100	$0011+3$
－5	1011	0100
	1010	0101
	1001	0110 ＋5
	－7 1000	$0111+6$
	－8	＋7

2s complement（cont＇d）

\mathscr{H} If N is a positive number，then the negative of N （its 2 s complement or N^{*} ） is $N^{*}=2 n-N$
囚 example： 2 s complement of 7

$$
\begin{array}{r}
2^{4}=10000 \\
\text { subtract } 7=0111
\end{array}
$$

囚 example： 2 s complement of -7
$1001=$ repr．of -7

$$
\begin{aligned}
2^{4} & =10000 \\
\text { subtract }-7 & =\frac{1001}{0111}=\text { repr. of } 7
\end{aligned}
$$

囚 shortcut： 2 s complement＝bit－wise complement +1

$$
ख 0111->1000+1->1001 \text { (representation of -7) }
$$

$$
\text { ख1001 -> } 0110+1 \text {-> } 0111 \text { (representation of 7) }
$$

2s complement addition and subtraction

\& Simple addition and subtraction
囚 simple scheme makes $2 s$ complement the virtually unanimous choice for integer number systems in computers

4	0100			
+3	0011			
7	0111	\quad	-4	1100
---:	---:			
-7	$+(-3)$			
	11001			

4	0100		
-3	1101	-4	1100
1	10001	+3	0011
-1	1111		

Why can the carry-out be ignored?

H Can't ignore it completely
囚 needed to check for overflow (see next two slides)
H When there is no overflow, carry-out may be true but can be ignored
$-M+N$ when $N>M$:

$$
M^{*}+N=(2 n-M)+N=2 n+(N-M)
$$

ignoring carry-out is just like subtracting $2 n$
$-M+-N$ where $N+M \leq 2 n-1$

$$
(-M)+(-N)=M^{*}+N^{*}=(2 n-M)+(2 n-N)=2 n-(M+N)+2 n
$$

ignoring the carry, it is just the $2 s$ complement representation for $-(M+N)$

Overflow in 2s complement addition/subtraction

H Overflow conditions
囚 add two positive numbers to get a negative number囚 add two negative numbers to get a positive number

$5+3=-8$
Autumn 2000

$$
-7-2=+7
$$

Overflow conditions

\mathscr{H} Overflow when carry into sign bit position is not equal to carry-out

	0111
5	0101
$\frac{3}{-8}$	$\underline{00} 1$
overflow	1000

overflow
overflow

no overflow
no overflow

Circuits for binary addition

H Half adder（add 2 1－bit numbers）
囚 Sum $=A i^{\prime} B i+A i B i '=A i$ xor $B i$
囚 Cout $=\mathrm{Ai} \mathrm{Bi}$
If Full adder（carry－in to cascade for multi－bit adders）
囚 Sum $=\mathrm{Ci}$ xor A xor B
© Cout $=\mathrm{BCi}+\mathrm{ACi}+\mathrm{AB}=\mathrm{Ci}(\mathrm{A}+\mathrm{B})+\mathrm{AB}$

Ai	Bi	Sum	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

Ai	Bi	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full adder implementations

\＆Alternative implementation
囚 5 gates
Cout $=A B+\operatorname{Cin}(A$ xor $B)=A B+B C i n+A C i n$
\triangle half adder is an XOR gate and AND gate
囚 2 XORs， 2 ANDs， 1 OR

Adder/subtractor

H Use an adder to do subtraction thanks to 2 s complement representation
$\triangle A-B=A+(-B)=A+B^{\prime}+1$
© control signal selects B or $2 s$ complement of B

Ripple-carry adders

It Critical delay
囚 the propagation of carry from low to high order stages

Ripple－carry adders（cont＇d）

\＆Critical delay
囚 the propagation of carry from low to high order stages囚 $1111+0001$ is the worst case addition囚 carry must propagate through all bits

Carry－lookahead logic

H Carry generate： $\mathrm{Gi}=\mathrm{Ai} \mathrm{Bi}$
囚 must generate carry when $\mathrm{A}=\mathrm{B}=1$
\％Carry propagate： $\mathrm{Pi}=\mathrm{Ai}$ xor Bi
\triangle carry－in will equal carry－out here
H Sum and Cout can be re－expressed in terms of generate／propagate：
$\triangle \mathrm{Si}=\mathrm{Ai}$ xor Bi xor Ci
= Pi xor Ci
$\triangle \mathrm{Ci}+1=\mathrm{Ai} \mathrm{Bi}+\mathrm{AiCi}+\mathrm{BiCi}$
$=A i B i+C i(A i+B i)$
$=\mathrm{Ai} \mathrm{Bi}+\mathrm{Ci}(\mathrm{Ai}$ xor Bi$)$
$=\mathrm{Gi}+\mathrm{CiPi}$

Carry－lookahead logic（cont＇d）

If Re－express the carry logic as follows：
囚 C1＝G0＋P0 C0
$\triangle C 2=\mathrm{G} 1+\mathrm{P} 1 \mathrm{C} 1=\mathrm{G} 1+\mathrm{P} 1 \mathrm{G} 0+\mathrm{P} 1 \mathrm{P} 0 \mathrm{C} 0$
囚 $\mathrm{C} 3=\mathrm{G} 2+\mathrm{P} 2 \mathrm{C} 2=\mathrm{G} 2+\mathrm{P} 2 \mathrm{G} 1+\mathrm{P} 2 \mathrm{P} 1 \mathrm{G} 0+\mathrm{P} 2 \mathrm{P} 1 \mathrm{P} 0 \mathrm{C} 0$
囚 $44=\mathrm{G} 3+\mathrm{P} 3 \mathrm{C} 3=\mathrm{G} 3+\mathrm{P} 3 \mathrm{G} 2+\mathrm{P} 3 \mathrm{P} 2 \mathrm{G} 1+\mathrm{P} 3$ P2 P1 G0

+ P3 P2 P1 P0 C0
\mathscr{H} Each of the carry equations can be implemented with two－level logic囚 all inputs are now directly derived from data inputs and not from intermediate carries
® this allows computation of all sum outputs to proceed in parallel

Carry－lookahead implementation

Carry－lookahead implementation（cont＇d）

H Carry－lookahead logic generates individual carries
囚 sums computed much more quickly in parallel囚 however，cost of carry logic increases with more stages

Carry－lookahead adder with cascaded carry－lookahead logic

H Carry－lookahead adder

$$
\mathrm{G}=\mathrm{G} 3+\mathrm{P} 3 \mathrm{G} 2+\mathrm{P} 3 \mathrm{P} 2 \mathrm{G} 1+\mathrm{P} 3 \mathrm{P} 2 \mathrm{P} 1 \mathrm{G} 0
$$

， 4 four－bit adders with internal carry lookahead
囚 second level carry lookahead unit extends lookahead to 16 bits

Carry-select adder

H Redundant hardware to make carry calculation go faster
® compute two high-order sums in parallel while waiting for carry-in囚 one assuming carry-in is 0 and another assuming carry-in is 1囚 select correct result once carry-in is finally computed

Arithmetic logic unit design specification

$M=0$, logical bitwise operations

S1 SO	Function	Comment
0	0	$\mathrm{Fi}=\mathrm{Ai}$
0	1	$\mathrm{Fi}=$ not Ai
1	0	$\mathrm{Fi}=\mathrm{Ai}$ xor Bi
1	1	$\mathrm{Fi}=\mathrm{Ai}$ xnor Bi
input Ai transferred to output		
complement of Ai transferred to output		
compute XOR of Ai, Bi		
compute XNOR of Ai, Bi		

$M=1, C 0=0$, arithmetic operations

0	0	$F=A$	input A passed to output
0	1	$\mathrm{F}=\operatorname{not} \mathrm{A}$	complement of A passed to
1	0	$F=A$ plus B	sum of A and B
1	1	$F=(\operatorname{not} A)$ plus B	sum of B and complement
, $\mathrm{CO}=1$, arithmetic operations			
0	0	$\mathrm{F}=\mathrm{A}$ plus 1	increment A
0	1	$F=(\operatorname{not} A)$ plus 1	twos complement of A
1	0	$F=A$ plus B plus 1	increment sum of A and B
1	1	$F=(\operatorname{not} A)$ plus B plus 1	B minus A

logical and arithmetic operations not all operations appear useful, but "fall out" of internal logic

Arithmetic logic unit design (cont'd)

H Sample ALU - truth table

M	S1	S0	Ci	Ai	Bi	Fi	$\mathrm{Ci}+1$
0	0	0	X	0	X	0	X
			X	1	X	1	X
	0	1	X	0	X	1	X
			X	1	X	0	X
	1	0	X	0	0	0	X
			X	0	1	1	X
			X	1	0	1	X
			X	1	1	0	X
	1	1	X	0	0	1	X
			X	0	1	0	X
			X	1	0	0	X
			X	1	1	1	X
1	0	0	0	0	X	0	X
			0	1	X	1	X
	0	1	0	0	X	1	X
			0	1	X	0	X
	1	0	0	0	0	0	0
			0	0	1	1	0
			0	1	0	1	0
			0	1	1	0	1
	1	1	0	0	0	1	0
			0	0	1	0	1
			0	1	0	0	0
			0	1	1	1	0
1	0	0	1	0	X	1	0
			1	1	X	0	1
	0	1	1	0	X	0	1
			1	1	X	1	0
	1	0	1	0	0	1	0
			1	0	1	0	1
			1	1	0	0	1
			1	1	1	1	1
	1	1	1	0	0	0	1
			1	0	1	1	1
			1	1	0	1	0
			1	1	1	0	1

Arithmetic logic unit design (cont'd)

\mathscr{H} Sample ALU - multi-level discrete gate logic implementation

 [33]

12 gates

Arithmetic logic unit design（cont＇d）

Summary for examples of combinational logic

H Combinational logic design process
囚 formalize problem：encodings，truth－table，equations
囚 choose implementation technology（ROM，PAL，PLA，discrete gates）
囚 implement by following the design procedure for that technology
H Binary number representation
\triangle positive numbers the same
difference is in how negative numbers are represented
® 2s complement easiest to handle：one representation for zero，slightly complicated complementation，simple addition
\＆Circuits for binary addition
® basic half－adder and full－adder
囚 carry lookahead logic
囚 carry－select
\％ALU Design
囚 specification，implementation

