Finite State Machines

```
H Sequential circuits
    @ primitive sequential elements
    @ combinational logic
H Models for representing sequential circuits
     finite-state machines (Moore and Mealy)
H}\mathrm{ Basic sequential circuits revisited
    @ shift registers
    @ counters
& Design procedure
    @ state diagrams
    \state transition table
    @ next state functions
H Hardware description languages
```

Abstraction of state elements

H Divide circuit into combinational logic and state
H Localize the feedback loops and make it easy to break cycles
\mathscr{H} Implementation of storage elements leads to various forms of sequential logic

Forms of sequential logic

If Asynchronous sequential logic - state changes occur whenever state inputs change (elements may be simple wires or delay elements)
If Synchronous sequential logic - state changes occur in lock step across all storage elements (using a periodic waveform - the clock)

Finite state machine representations

H States: determined by possible values in sequential storage elements
If Transitions: change of state
H Clock: controls when state can change by controlling storage elements

H Sequential logic
囚 sequences through a series of states
囚 based on sequence of values on input signals
© clock period defines elements of sequence

Example finite state machine diagram

If Combination lock from introduction to course
囚 5 states
囚 5 self－transitions＋ 1 reset to state S 1

Can any sequential system be represented with a state diagram？

H Shift register

Counters are simple finite state machines

\＆Counters

囚 proceed through well－defined sequence of states in response to enable
H Many types of counters：binary，BCD，Gray－code
囚 3－bit up－counter：000，001，010，011，100，101，110，111，000，．．．
® 3－bit down－counter：111，110，101，100，011，010，001，000，111，．．．

How do we turn a state diagram into logic？

H Counter
囚 3 flip－flops to hold state
® logic to compute next state
© clock signal controls when flip－flop memory can change
凹wait long enough for combinational logic to compute new value区don＇t wait too long as that is low performance

FSM design procedure

H Start with counters
囚 simple because output is just state
囚 simple because no choice of next state based on input

H State diagram to state transition table
tabular form of state diagram
囚 like a truth－table
H State encoding
decide on representation of states
§ for counters it is simple：just its value
H Implementation
囚 flip－flop for each state bit
囚 combinational logic based on encoding

FSM design procedure：state diagram to encoded state transition table

```
H Tabular form of state diagram
H Like a truth-table (specify output for all input combinations)
Hz Encoding of states: easy for counters - just use value
```


current state		next state	
0	000	001	1
1	001	010	2
2	010	011	3
3	011	100	4
4	100	101	5
5	101	110	6
6	110	111	7
7	111	000	0

Implementation

H D flip-flop for each state bit
H Combinational logic based on encoding
 input to D-FF

N2 <= C1C2' + C1'C2 <= C1 xor C2
$\mathrm{N} 3<=\mathrm{C1} \mathrm{C}^{2} \mathrm{C}^{\prime}+\mathrm{C} 1^{\prime} \mathrm{C} 3+\mathrm{C} 2^{\prime} \mathrm{C} 3$
$<=(\mathrm{C} 1 \mathrm{C} 2) \mathrm{C} 3^{\prime}+\left(\mathrm{C} 1^{\prime}+\mathrm{C} 2^{\prime}\right) \mathrm{C} 3$ <= (C1C2)C3' + (C1C2)'C3
<= (C1C2) xor C3

Autumn 2000

N1

Back to the shift register

\mathscr{H} Input determines next state

In	C 1	C 2	C 3	N 1	N 2	N 3
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	1	0	1
1	0	1	1	1	0	1
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

More complex counter example

\& Complex counter
囚 repeats 5 states in sequence
\triangle not a binary number representation
H Step 1: derive the state transition diagram
囚 count sequence: 000, 010, 011, 101, 110
H Step 2: derive the state transition table from the state transition diagram

note the don't care conditions that arise from the unused state codes
Autumn 2000 CSE370 - VII - Finite State Machines

More complex counter example (cont'd)

H Step 3: K-maps for next state functions

$\mathrm{C}+<=\mathrm{A}$
$B+<=B^{\prime}+A^{\prime} C^{\prime}$
$\mathrm{A}+<=\mathrm{BC}^{\prime}$

Self－starting counters（cont＇d）

If Re－deriving state transition table from don＇t care assignment

Present State				Next State	
C	B	A	C＋+	B＋+	A＋
0	0	0	0	1	0
0	0	1	1	1	0
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	1	0	0

111
001

Self－starting counters

H Start－up states
囚 at power－up，counter may be in an unused or invalid state
囚 designer must guarantee that it（eventually）enters a valid state
H Self－starting solution
® design counter so that invalid states eventually transition to a valid state囚 may limit exploitation of don＇t cares

Activity (cont'd)

| P |
| :--- | :--- |
| |
| Autumn 2000 CSE370 - VII - Finite State Machines |

Counter／shift－register model

If Values stored in registers represent the state of the circuit
H Combinational logic computes：
囚 next state
खfunction of current state and inputs
囚 outputs
凹values of flip－flops

General state machine model

\mathscr{H} Values stored in registers represent the state of the circuit
H Combinational logic computes：
囚 next state
区function of current state and inputs
囚 outputs
凹function of current state and inputs（Mealy machine）
区function of current state only（Moore machine）

State machine model (cont'd)

If States: S1, S2, ..., Sk
H Inputs: I1, I2, ... Im
\& Outputs: $\mathrm{O} 1, \mathrm{O} 2, \ldots, \mathrm{On}$
H Transition function: $\mathrm{Fs}(\mathrm{Si}, \mathrm{Ij})$
H Output function: $\mathrm{Fo}(\mathrm{Si})$ or $\mathrm{Fo}(\mathrm{Si}, \mathrm{Ij})$

Example: ant brain (Ward, MIT)

H Sensors: $\quad \mathrm{L}$ and R antennae, 1 if in touching wall
\& Actuators: F -forward step, TL/TR - turn left/right slightly
If Goal: find way out of maze
Hf Strategy: keep the wall on the right

Designing an ant brain

\mathscr{H} State diagram

Synthesizing the ant brain circuit

If Encode states using a set of state variables
囚 arbitrary choice－may affect cost，speed
H Use transition truth table
\triangle define next state function for each state variable
Q define output function for each output
H Implement next state and output functions using combinational logic
囚 2－level logic（ROM／PLA／PAL）
囚 multi－level logic
囚 next state and output functions can be optimized together

Transition truth table

Synthesis

H 5 states : at least 3 state variables required (X, Y, Z)

LOST	-000
E/G	-001
A	-010
B	-011
C	-100

state	L R	next state	outputs	it now remains to synthesize these 6 functions
X, Y, Z		$\mathrm{X}^{+}, \mathrm{Y}^{+}, \mathrm{Z}^{+}$	F TR TL	
000	00	000	100	
000	01	001	100	
...	
010	00	011	101	
010	01	010	101	
010	10	001	101	
010	11	001	101	
011	00	100	110	
011	01	010	110	
		\ldots	...	

Synthesis of next state and output functions

state inputs	next state outputs					
X,Y,Z L R	$\mathrm{X}^{+}, \mathrm{Y}^{+}, \mathrm{Z}^{+}$		TR			
00000	000	1	0	0		
000-1	001		0	0		
0001 -	001	1	0	0		
00100	011	0	0	1		
001-1	010	0	0	1		
001 1-	010		0	1		
01000	011		0	1		
01001	010		0	1		
0101 -	001		0	1		
011-0	100		1	0		
011-1	010		1	0		
100-0	100		1	0		
100-1	010		1	0		

Circuit implementation

Ho Outputs are a function of the current state only - Moore machine

Don't cares in FSM synthesis

\mathscr{H} What happens to the "unused" states $(101,110,111)$?
H They were exploited as don't cares to minimize the logic
® if the states can't happen, then we don't care what the functions do © if states do happen, we may be in trouble

State minimization

H Fewer states may mean fewer state variables
H High-level synthesis may generate many redundant states
\& Two state are equivalent if they are impossible to distinguish from the outputs of the FSM, i. e., for any input sequence the outputs are the same

H Two conditions for two states to be equivalent:
® 1) output must be the same in both states
囚 2) must transition to equivalent states for all input combinations

Ant brain revisited

If Any equivalent states?

New improved brain

H Merge equivalent B and C states
H Behavior is exactly the same as the 5 -state brain
H We now need only 2 state variables rather than 3

New brain implementation

01

TR \quad0 0 1 0 0 $\frac{Y}{Y}$

TL
\qquad0 1 0 1 0 1 0 1 $\frac{Y}{Y}$

Mealy vs．Moore machines

If Moore：outputs depend on current state only
H Mealy：outputs may depend on current state and current inputs
\mathscr{H} Our ant brain is a Moore machine
囚 output does not react immediately to input change
If We could have specified a Mealy FSM
囚 outputs have immediate reaction to inputs
囚 as inputs change，so does next state，doesn＇t commit until clocking event

Autumn 2000

Specifying outputs for a Moore machine

H Output is only function of state
囚 specify in state bubble in state diagram
® example：sequence detector for 01 or 10

\(\left.$$
\begin{array}{lll|ll} & & \begin{array}{l}\text { current }\end{array} & \begin{array}{l}\text { next } \\
\text { reset }\end{array}
$$ \& input

state\end{array}\right)\) output | state |
| :--- | :--- | :--- | :--- |

Specifying outputs for a Mealy machine

If Output is function of state and inputs
® specify output on transition arc between states
囚 example：sequence detector for 01 or 10

		current reset	next input statate	output
1	-	-	A	0
0	0	A	B	0
0	1	A	C	0
0	0	B	B	0
0	1	B	C	1
0	0	C	B	1
0	1	C	C	0

Comparison of Mealy and Moore machines

H Mealy machines tend to have less states
囚 different outputs on arcs（ $\mathrm{n}^{\wedge} 2$ ）rather than states（ n ）
\＆Moore machines are safer to use
囚 outputs change at clock edge（always one cycle later）
囚 in Mealy machines，input change can cause output change as soon as logic is done－a big problem when two machines are interconnected－ asynchronous feedback
H Mealy machines react faster to inputs
囚 react in same cycle－don＇t need to wait for clock
囚 in Moore machines，more logic may be necessary to decode state into outputs－more gate delays after

Mealy and Moore examples

H Recognize $A, B=0,1$
囚 Mealy or Moore?

Mealy and Moore examples (cont'd)

H Recognize $A, B=1,0$ then 0,1
囚 Mealy or Moore?

Registered Mealy machine（really Moore）

If Synchronous（or registered）Mealy machine
囚 registered state AND outputs
囚 avoids＇glitchy＇outputs
囚 easy to implement in PLDs
H Moore machine with no output decoding
囚 outputs computed on transition to next state rather than after entering囚 view outputs as expanded state vector

Hardware Description Languages and Sequential Logic

H Flip－flops
囚 representation of clocks－timing of state changes
® asynchronous vs．synchronous
\＆FSMs
囚 structural view（FFs separate from combinational logic）
囚 behavioral view（synthesis of sequencers－not in this course）
H Data－paths $=$ data computation（e．g．，ALUs，comparators）+ registers
囚 use of arithmetic／logical operators
囚 control of storage elements

Example: reduce-1-string-by-1

It Remove one 1 from every string of 1 s on the input

Verilog FSM - Reduce 1s example

H Moore machine

```
    define zero 0
    -define one1 1 « state assignment
    define twols 2
    module reduce (clk, reset, in, out);
        input clk, reset, in;
        output out;
    reg out;
    reg [2:1] state;
                    // state variables
    reg [2:1] next_state;
    always @(posedge clk)
        if (reset) state = 'zero;
        else state = next_state;
```


Moore Verilog FSM (cont'd)

```
always @(in or state) crucial to include
    case (state)
    `zero:
        // last input was a zero
        begin
            if (in) next_state = `onel;
            else next_state = `zero;
        end
            `\mp@code{one1: note that output}
            'one1:
    begin
            if (in) next_state = 'two1s;
            else next_state = `zero;
        end
        `two1s:
    // we've seen at least 2 ones
        begin
            if (in) next_state = 'twols;
            else next_state = `zero;
    end
    endcase
                                    all signals that are
                        input to state determination
            zero: out = 0;
            -one1: out = 0;
            twols: out = 1;
        endcase
```

 depends only on state
 depends only on state
 always @(state) case (state)

Mealy Verilog FSM

```
module reduce (clk, reset, in, out);
    input clk, reset, in;
    output out;
    reg out;
    reg state; // state variables
    reg next_state;
    always @(posedge clk)
        if (reset) state = 'zero;
        else state = next_state;
    always @(in or state)
        case (state)
            zzero: // last input was a zero
            begin
                out = 0;
                if (in) next_state = 'one;
                else next_state = `zero;
            end
            one: // we've seen one 1
            if (in) begin
                next_state = `one; out = 1;
            end else
                next_state = `zero; out = 0;
            end
        endcase
```

 endmodule
 Autumn 2000

Synchronous Mealy Machine

```
module reduce (clk, reset, in, out);
    input clk, reset, in;
    output out;
    reg out;
    reg state; // state variables
    always @(posedge clk)
        if (reset) state = `zero;
        else
            case (state)
                `zero: // last input was a zero
            begin
                out = 0;
                if (in) state = `one;
                else state = `zero;
            end
            `one: // we've seen one 1
            if (in) begin
                state = `one; out = 1;
            end else begin
                state = `zero; out = 0;
            end
        endcase
endmodule
```


Sequential logic implementation summary

H Models for representing sequential circuits
囚 abstraction of sequential elements
finite state machines and their state diagrams囚 inputs／outputs
囚 Mealy，Moore，and synchronous Mealy machines
\＆Finite state machine design procedure
® deriving state diagram
deriving state transition table
determining next state and output functions
® implementing combinational logic
H Hardware description languages

