Sequential logic implementation

H Finite－state machines
囚 Moore
囚 Mealy
囚 Synchronous Mealy
H Implementation
囚 random logic gates and FFs
囚 programmable logic devices（PAL with FFs）
H Design procedure
囚 state diagrams
囚 state transition table
囚 state assignment
囚 next state functions

Implementation using PALs

H Programmable logic building block for sequential logic
囚 macro－cell：FF＋logic
区D－FF
囚two－level logic capability like PAL（e．g．， 8 product terms）

Comparison of Mealy and Moore machines

H Mealy machines tend to have less states
\triangle different outputs on arcs（ $\mathrm{n}^{\wedge} 2$ ）rather than states（ n ）
H Moore machines are safer to use
囚 outputs change at clock edge（always one cycle later）
囚 in Mealy machines，input change can cause output change as soon as logic is done－a big problem when two machines are interconnected－ asynchronous feedback
H Mealy machines react faster to inputs
® react in same cycle－don＇t need to wait for clock
囚 in Moore machines，more logic may be necessary to decode state into outputs－more gate delays after

Comparison of Mealy and Moore machines（cont＇d）

\％Mealy
inputs

If Synchronous Mealy
state feedback
inputs

state feedback
Autumn 2000

Example：vending machine

H Release item after 15 cents are deposited
H Single coin slot for dimes，nickels
\＆No change

Example：vending machine（cont＇d）

H Suitable abstract representation
囚 tabulate typical input sequences：
区3 nickels
凹nickel，dime
囚dime，nickel
区two dimes
囚 draw state diagram：
区inputs：N，D，reset
区output：open chute
囚 assumptions：
区assume N and D asserted for one cycle
区each state has a self loop for $\mathrm{N}=\mathrm{D}=0$（no coin）

Example: vending machine (cont'd)

H Minimize number of states - reuse states whenever possible

symbolic state table

Example: vending machine (cont'd)

H Uniquely encode states

Example: Moore implementation

$$
\begin{aligned}
& \mathrm{D} 1=\mathrm{Q} 1+\mathrm{D}+\mathrm{Q} 0 \mathrm{~N} \\
& \mathrm{D} 0=\mathrm{Q} 0^{\prime} \mathrm{N}+\mathrm{Q} 0 \mathrm{~N}^{\prime}+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D} \\
& \text { OPEN }=\mathrm{Q} 1 \mathrm{Q} 0
\end{aligned}
$$

Example: vending machine (cont'd)

H One-hot encoding

present stateQ3 Q2 Q1 Q0	inputs	next state output		
	D N	D3 D2 D1 D0	open	
0001	00	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	0	
	01	$0 \begin{array}{llll}0 & 0 & 1 & 0\end{array}$	0	$D O=Q O N^{\prime}$
	10	$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	0	
	11	- - -	-	$\mathrm{D} 1=\mathrm{Q} 0 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D}^{\prime} \mathrm{N}^{\prime}$
0010	00	0	0	
	$\begin{array}{ll}0 & 1 \\ 1 & \end{array}$	$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	0	$\mathrm{D} 2=\mathrm{Q} 0 \mathrm{D}+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 2 \mathrm{D}^{\prime} \mathrm{N}^{\prime}$
	10	$1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$	0	D2 $=$ Q0D+Q1N+Q2 ${ }^{\prime}$
	11	- - - -	-	
0100	00	$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	0	$\mathrm{D} 3=\mathrm{Q} 1 \mathrm{D}+\mathrm{Q} 2 \mathrm{D}+\mathrm{Q} 2 \mathrm{~N}+\mathrm{Q} 3$
	01	$\begin{array}{llll}1 & 0 & 0 & 0\end{array}$	0	
	10	$1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$	0	OPEN $=$ Q3
	11	- - - -	-	
1000	- -	$1 \begin{array}{llll}1 & 0 & 0\end{array}$	1	

Equivalent Mealy and Moore state diagrams

H Moore machine
囚 outputs associated with state

If Mealy machine
囚 outputs associated with transitions

Vending machine example (Moore PLD mapping)

Example: Mealy implementation

Example: Mealy implementation

D0 $\quad=\operatorname{reset}^{\prime}\left(\mathrm{QO}^{\prime} \mathrm{N}+\mathrm{Q} 0 \mathrm{~N}^{\prime}+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D}\right)$
D1 $\quad=\operatorname{reset}^{\prime}(\mathrm{Q} 1+\mathrm{D}+\mathrm{Q} 0 \mathrm{~N})$
OPEN $=\operatorname{reset}^{\prime}(\mathrm{Q} 1 \mathrm{Q} 0+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D}+\mathrm{Q} 0 \mathrm{D})$

Vending machine: Moore to synch. Mealy

If $\mathrm{OPEN}=\mathrm{Q} 1 \mathrm{Q} 0$ creates a combinational delay after Q1 and Q0 change in Moore implementation
\mathscr{H} This can be corrected by retiming, i.e., move flip-flops and logic through each other to improve delay
\& OPEN $=\operatorname{reset}^{\prime}(\mathrm{Q1}+\mathrm{D}+\mathrm{Q} 0 \mathrm{~N})\left(\mathrm{Q} 0^{\prime} \mathrm{N}+\mathrm{Q} 0 \mathrm{~N}\right.$ + Q1N + Q1D $)$

$$
=\operatorname{reset}^{\prime}(\mathrm{Q} 1 \mathrm{Q} 0 \mathrm{~N} \text { + Q1N + Q1D + Q0'ND + Q0N'D }
$$

H Implementation now looks like a synchronous Mealy machine囚 it is common for programmable devices to have FF at end of logic

Autumn 2000

Example：traffic light controller

H A busy highway is intersected by a little used farmroad
H Detectors C sense the presence of cars waiting on the farmroad
囚 with no car on farmroad，light remain green in highway direction
if vehicle on farmroad，highway lights go from Green to Yellow to Red， allowing the farmroad lights to become green
囚 these stay green only as long as a farmroad car is detected but never longer than a set interval
囚 when these are met，farm lights transition from Green to Yellow to Red， allowing highway to return to green
® even if farmroad vehicles are waiting，highway gets at least a set interval as green
H Assume you have an interval timer that generates：
® a short time pulse（TS）and
囚 a long time pulse（TL），
囚 in response to a set（ST）signal．
$\triangle ~ T S ~ i s ~ t o ~ b e ~ u s e d ~ f o r ~ t i m i n g ~ y e l l o w ~ l i g h t s ~ a n d ~ T L ~ f o r ~ g r e e n ~ l i g h t s ~$

Example: traffic light controller (cont')

\& Highway/farm road intersection
farm road

Example: traffic light controller (cont’)

H Tabulation of inputs and outputs
inputs description outputs description
reset place FSM in initial state \quad HG, HY, HR assert green/yellow/red highway lights
C detect vehicle on the farm road FG, FY, FR assert green/yellow/red highway lights
TS short time interval expired
TL long time interval expired

H Tabulation of unique states - some light configurations imply others
state description
HG highway green (farm road red)
HY highway yellow (farm road red)
FG farm road green (highway red)
FY farm road yellow (highway red)

Example: traffic light controller (cont')

H State diagram

Example: traffic light controller (cont’)

If Generate state table with symbolic states
H Consider state assignments
output encoding - similar problem
to state assignment
$($ Green $=00$, Yellow $=01$, Red $=10)$

Inputs			Present State	Next State	Outputs		
C	TL	TS			ST	H	F
0	-	-	HG	HG	0	Green	Red
-	0	-	HG	HG	0	Green	Red
1	1	-	HG	HY	1	Green	Red
-	-	0	HY	HY	0	Yellow	Red
-	-	1	HY	FG	1	Yellow	Red
1	0	-	FG	FG	0	Red	Green
0	-	-	FG	FY	1	Red	Green
-	1	-	FG	FY	1	Red	Green
-	-	0	FY	FY	0	Red	Yellow
-	-	1	FY	HG	1	Red	Yellow

SA1:	$H G=00$	$H Y=01$	$F G=11$	$F Y=10$
SA2:	$H G=00$	$H Y=10$	$F G=01$	$F Y=11$
SA3:	$H G=0001$	$H Y=0010$	$F G=0100$	$F Y=1000$

Autumn 2000

Logic for different state assignments

H SA1

```
NS1 = C•TL'\bulletPS1•PS0 + TS•PS1'\bulletPS0 + TS`PS1•PSO' + C'•PS1•PSO + TL\bulletPS1•PSO
NS0 = C•TL\bulletPS1'\bulletPS0' + C•TL'\bulletPS1•PS0 + PS1'\bulletPS0
```



```
H1 = PS1
F1 = PS1'
H0 = PS1'•PS0
F0 = PS1•PSO'
```

H SA2
NS1 $=$ C•TL•PS1＇+ TS＇•PS1＋C＇•PS1＇•PSO NS0 $=$ TS \cdot PS1•PSO＇+ PS1＇•PS0 + TS＇•PS1•PS0

ST $=\mathrm{C} \cdot \mathrm{TL} \bullet$ PSS $1^{\prime}+\mathrm{C}^{\prime} \cdot$ PS1＇\bullet PSO $+\mathrm{TS} \bullet$ PS 1
$\mathrm{H} 1=\mathrm{PSO}$
H0＝PS1•PS0

F1＝PSO＇
$F 0=P S 1 \cdot P S 0$
\％SA

NS3 $=\mathrm{C}^{\prime} \cdot$ PS2 + TL \bullet PS2 + TS＇\cdot PS3	NS2 $=$ TS•PS1＋C \cdot TL＇•PS2
NS1 $=$ C \bullet TL \bullet PS0 + TS＇•PS1	NS0 $=$ C＇•PS0＋TL＇•PS0＋TS

ST $=C \cdot T L \bullet P S 0+T S \bullet P S 1+C^{\prime} \bullet P S 2+T L \bullet P S 2+T S \bullet P S 3$
$\mathrm{H} 1=\mathrm{PS} 3+\mathrm{PS} 2 \quad \mathrm{H} 0=\mathrm{PS} 1$
$F 1=P S 1+$ PS0 $\quad F 0=$ PS3

Autumn 2000

Sequential logic implementation summary

\＆Models for representing sequential circuits
® finite state machines and their state diagrams
囚 Mealy，Moore，and synchronous Mealy machines
H Finite state machine design procedure
\triangle deriving state diagram
deriving state transition table
囚 assigning codes to states
determining next state and output functions
® implementing combinational logic
\＆Implementation technologies
囚 random logic＋FFs
囚 PAL with FFs（programmable logic devices－PLDs）

