Computer organization

Computer design — an application of digital logic design procedures
Computer = processing unit + memory system
Processing unit = control + datapath
Control = finite state machine
1 inputs = machine instruction, datapath conditions
1 outputs = register transfer control signals, ALU operation codes
1 instruction interpretation = instruction fetch, decode, execute

1 Datapath = functional units + registers
1 functional units = ALU, multipliers, dividers, etc.
1 registers = program counter, shifters, storage registers

CSE 370 - Spring 2000 - Computer Organization - 1

Structure of a computer

1 Block diagram view

address
Processor readywrite Memory
. System
central processing data
unit (CPU)
control signals
Control Data'Rath
lata conditions

instruction unit execution unit
— instruction fetch and - functional units
interpretation FSM and registers

CSE 370 - Spring 2000 - Computer Organization - 2

Registers

1 Selectively loaded — EN or LD input
1 Output enable — OE input
1 Multiple registers — group 4 or 8 in parallel

OE asserted causes FF state to be
connected to output pins; otherwise they
are left unconnected (high impedance)

LD asserted during a lo-to-hi clock
transition loads new data into FFs

CSE 370 - Spring 2000 - Computer Organization - 3

Register transfer

1 Point-to-point connection
1 dedicated wires

1 muxes on inputs of
each register

control signals
for multiplexer

1 Common bus with output enables
1 output enables and load
enables for each register

1 Common input from multiplexer
load enables .EI IEI
for each register
M

CSE 370 - Spring 2000 - Computer Organization - 4

Register files

1 Collections of registers in one package

two-dimensional array of FFs

address used as index to a particular word

can have separate read and write addresses so can do both at same

time
1 4 by 4 register file
1 16 D-FFs
1 organized as four words of four bits each —[RE
1 write-enable (load) —R8
1 read-enable (output enable) — lwe 3
WB 22—
WA 1
— D3
—1D2
— b1
——1D0

Memories

1 Larger collections of storage elements
1 implemented not as FFs but as much more efficient latches
1 high-density memories use 1 to 5 switches (transitors) per memory bit
1 Static RAM - 1024 words each 4 bits wide
once written, memory holds forever (not true for denser dynamic RAM)
address lines to select word (10 lines for 1024 words)
read enable

| same as output enable —®®
| often called chip select —|WR
| permits connection of many — % 03—
chips into larger array — ﬁg %8%—
1 write enable (same as load enable) — ﬁg 100—
1 bi-directional data lines —|A3
| output when reading, input when writing —_ g%
—A0

CSE 370 - Spring 2000 - Computer Organization - 5

CSE 370 - Spring 2000 - Computer Organization - 6

Instruction sequencing

1 Example - an instruction to add the contents of two registers (Rx and Ry)
and place result in a third register (Rz)
1 Step 1: get the ADD instruction from memory into an instruction register
1 Step 2: decode instruction
1 instruction in IR has the code of an ADD instruction
1 register indices used to generate output enables for registers Rx and Ry
1 register index used to generate load signal for register Rz
1 Step 3: execute instruction
1 enable Rx and Ry output and direct to ALU
1 setup ALU to perform ADD operation
1 direct result to Rz so that it can be loaded into register

CSE 370 - Spring 2000 - Computer Organization - 7.

Elements of the control unit (aka instruction unit)

1 Standard FSM elements

state register

next-state logic

output logic (datapath/control signalling)

Moore or synchronous Mealy machine to avoid loops unbroken by FF

1 Plus additional "control" registers
1 instruction register (IR)
1 program counter (PC)
1 Inputs/outputs
1 outputs control elements of data path
1 inputs from data path used to alter flow of program (test if zero)

CSE 370 - Spring 2000 - Computer Organization - 9

Instruction types

1 Data manipulation

add, subtract

increment, decrement

multiply

shift, rotate

immediate operands

1 Data staging
1 load/store data to/from memory
1 register-to-register move

1 Control
1 conditional/unconditional branches in program flow
1 subroutine call and return

CSE 370 - Spring 2000 - Computer Organization - 8

Data path (heirarchy)

1 Arithmetic circuits constructed in hierarchical and iterative fashion
1 each bit in datapath is functionally identical Cin
1 4-bit, 8-bit, 16-bit, 32-bit datapaths

Ain
Bin

FA Sum

CSE 370 - Spring 2000 - Computer Organization - 11

Instruction execution

1 Control state diagram (for each diagram)
1 reset

1 fetch instruction

1

1

Reset

decode
execute

1 Instructions partitioned into three classes
1 branch

1 load/store
1 register-to-register
. Load,
1 Different sequence through Store
diagram for each
instruction type Branch Branch
Taken Not Take @

CSE 370 - Spring 2000 - Computer Organization - 10

Initialize
Machine

Register-
to-Register

Data path (ALU)

1 ALU block diagram
1 input: data and operation to perform
1 output: result of operation and status information

A B
T 16 T 16
Operation

CSE 370 - Spring 2000 - Computer Organization - 12

Data path (ALU + registers)

1 Accumulator

1 special register

1 one of the inputs to ALU

1 output of ALU stored back in accumulator
1 One-address instructions
operation and address of one operand

16
1 other operand and destination {
is accumulator register
REG AC
1 AC <- AC op Mem[addr] 6

"single address instructions”

(AC implicit operand) _OP)
1 Multiple registers

1 part of instruction used N
to choose register operands

CSE 370 - Spring 2000 - Computer Organization - 13

Instruction path

1 Program counter
1 keeps track of program execution
1 address of next instruction to read from memory
1 may have auto-increment feature or use ALU
1 Instruction register
current instruction
includes ALU operation and address of operand
also holds target of jump instruction
immediate operands
1 Relationship to data path
1 PC may be incremented through ALU
1 contents of IR may also be required as input to ALU

CSE 370 - Spring 2000 - Computer Organization - 15

Data path (bit-slice)

1 Bit-slice concept — iterate to build n-bit wide datapaths

co ALU ALU — ClI

N
1,
N
N

[“~memory
1 bit wide 2 bits wide

CSE 370 - Spring 2000 - Computer Organization - 14

Data path (memory interface)

1 Memory
1 separate data and instruction memory (Harvard architecture)
| two address busses, two data busses
1 single combined memory (Princeton architecture)
I single address bus, single data bus
1 Separate memory
1 ALU output goes to data memory input
1 register input from data memory output
1 data memory address from instruction register
1 instruction register from instruction memory output
1 instruction memory address from program counter
1 Single memory
1 address from PC or IR
1 memory output to instruction and data registers
1 memory input from ALU output

Block diagram of processor

1 Register transfer view of Princeton architecture

which register outputs are connected to which register inputs

arrows represent data-flow, other are control signals from control FSM
MAR may be a simple multiplexer rather than separa‘t{eadregister

MBR is split in two (REG and IR)

load control for each register l l
R
data
ata Memor
6-bit words)
addr
Control MAR
FSM
Fi6 F16 |
v v
0P
16

CSE 370 - Spring 2000 - Computer Organization - 17

CSE 370 - Spring 2000 - Computer Organization - 16

Block diagram of processor

1 Register transfer view of Harvard architecture

which register outputs are connected to which register inputs

arrows represent data-flow, other are control signals from control FSM
two MARs (PC and IR) Ioaad

two MBRs (REG and IR)

=] iy
load control for each register d wr
16 16 store data
pa
0P}

ata Memol
(l6-bit words)

N 16 addr

Control 16
FSM v
cata
16 nst Memory
16 £ [8-bit words|
0Py addr
16

CSE 370 - Spring 2000 - Computer Organization - 18

A simplified processor data-path and memory

Princeton architecture memory has only 255 words _,,
.) with a display on the last one
Register file

Instruction register PUsel esen UL

PC incremented
through ALU

1 Modeled after
MIPS rt000
(used in 378
textbook by
Patterson &
Hennessy)
really a 32 bit
machine
we'll do a 16 bit
version

CSE 370 - Spring 2000 - Computer Organization - 19

Processor control

1 Synchronous Mealy machine
1 Multiple cycles per instruction

Controller RegndER — FegindH
ALUnaEN [— ALTnaEH
PLwaEN — FCalH
1 TRret
P EEIEE s o
0= T —— T
Fr1d — Fr1d
Preel (— FLoel
mrRegizl — wrRegiel
=eTe — zero wrlatagel (— wrllataicl
regilrite — TEdlTice
IE1d (— IE1d
MER14 — MERLA
op 3
P o i Y
srcBl — STEEN
sreh [— srck

neg — neg

IN5T ot It

™

CSE 370 - Spring 2000 - Computer Organization - 20

Processor instructions

1 Three principal types (16 bits in each instruction)
type o] s rt rd funct

Y| P

Rlegister) [3 [3 [3 [3 [4 |
mmediate)[3 [3 [3 [7 |
J(ump) [3 113]

1 Some of the instructions

add 0] t rd 0
sub 0 s n rd 1
R | and 0 s t rd 2
or 0] t rd 3
slt 0 rs rt rd 4
Tw 1 3 t offset rt = mem[rs + offset]
sw 2 rs 14 offset mem[rs + offset] = rt
I beq 3 s 3 offset pc = pc + offset, if (rs == rt)
addi 4 s t offset rt = rs + offset
]] 5 target address pc = target address
halt 7 - stop execution until reset

CSE 370 - Spring 2000 - Computer Organization - 21

Tracing an instruction’s execution

1 Instruction: r3=rl+1r2
R [0 [rs=r1 [nt=r2 | rd=r3 |[funct=0 |
1 1. instruction fetch
move instruction address from PC to memory address bus
assert memory read
move data from memory data bus into IR
configure ALU to add 1 to PC
configure PC to store new value from ALUout
1 2. instruction decode
op-code bits of IR are input to control FSM
1 rest of IR bits encode the operand addresses (rs and rt)
| these go to register file

Tracing an instruction's execution (cont’d)

1 Instruction: r3=rl+nr2
R [0 [rs=rl | rt=r2 | rd=r3 |funct=0 |

1 3. instruction execute
1 setup ALU inputs
1 configure ALU to perform ADD operation
1 configure register file to store ALU result (rd)

CSE 370 - Spring 2000 - Computer Organization - 23

CSE 370 - Spring 2000 - Computer Organization - 22

Tracing an instruction's execution (cont’d)

B Stepl

edrite weRegisl

Teeies [memegEel
rbandiel

.

Lt Reg

wr File *F

Regh

— ||

CSE 370 - Spring 2000 - Computer Organization - 24

Tracing an instruction's execution (cont’d)

BUrel zeset FULA]

1 Step2

CSE 370 - Spring 2000 - Computer Organization - 25 V to controller

Tracing an instruction's execution (cont’d)

BUrel zeset FULA]

1 Step3

Register-transfer-level description

1 Control
1 transfer data between registers by asserting appropriate control signals

1 Register transfer notation - work from register to register
1 instruction fetch:
mabus « PC; - move PC to memory address bus (PCmaEN, ALUmaEN)
memory read; - assert memory read signal (mr, RegBmdEN)
IR < memory; - load IR from memory data bus (IRId)
op « add —send PC into A input, 1 into B input, add
(srcA, srcBO, scrB1, op)
PC « ALUout - load result of incrementing in ALU into PC (PCld, PCsel)
1 instruction decode:
IR to controller
values of A and B read from register file (rs, rt)
1 instruction execution:

op « add — send regA into A input, regB into B input, add
(srcA, srcBO, scrB1, op)
rd <~ ALUout - store result of add into destination register

(regWrite, wrDataSel, wrRegSel)

CSE 370 - Spring 2000 - Computer Organization - 27

CSE 370 - Spring 2000 - Computer Organization - 26

Register-transfer-level description (cont’d)

1 How many states are needed to accomplish these transfers?
1 data dependencies (where do values that are needed come from?)
1 resource conflicts (ALU, busses, etc.)
1 Inour case, it takes three cycles
1 one for each step
1 all operation within a cycle occur between rising edges of the clock
1 How do we set all of the control signals to be output by the state machine?
1 depends on the type of machine (Mealy, Moore, synchronous Mealy)

Review of FSM timing

fetch decode execute

‘ | step 1 ‘ step 2 ‘ step 3 | ‘
IR « mem[PC]A A< rs rdeA+B

f froritecn t f

to configure the data-path to do this here,
when do we set the control signals?

CSE 370 - Spring 2000 - Computer Organization - 29

CSE 370 - Spring 2000 - Computer Organization - 28

FSM controller for CPU (skeletal Moore FSM)

1 First pass at deriving the state diagram (Moore machine)
1 these will be further refined into sub-states

instruction
decode

instruction
execution

CSE 370 - Spring 2000 - Computer Organization - 30

FSM controller for CPU (reset and inst. fetch)

1 Assume Moore machine

1 outputs associated with states rather than arcs
1 Reset state and instruction fetch sequence
1 On reset (go to Fetch state)

1 start fetching instructions

1 PC will set itself to zero

reset
mabus « PC;
memory read; instructi
IR < memory data bus; @ msftl;.ltjr(::hmn
PC «PC+1;

CSE 370 - Spring 2000 - Computer Organization - 31

FSM controller for CPU (decode)

1 Operation decode state
1 next state branch based on operation code in instruction
1 read two operands out of register file
| what if the instruction doesn’t have two operands?

branch based on value of
Inst[15:13] and Inst[3:0]

CSE 370 - Spring 2000 - Computer Organization - 32

FSM controller for CPU (instruction execution)

1 For add instruction
1 configure ALU and store result in register

rd—A+B

1 other instructions may require multiple cycles

instruction
execution

CSE 370 - Spring 2000 - Computer Organization - 33

FSM controller for CPU

1 Now we need to repeat this for all the instructions of our processor
1 fetch and decode states stay the same
1 different execution states for each instruction
| some may require multiple states if available register transfer paths
require sequencing of steps

CSE 370 - Spring 2000 - Computer Organization - 35

FSM controller for CPU (add instruction)

1 Putting it all together
and closing the loop
1 the famous

instruction reset

fetch \ instructi
instruction

decode fetch

execute

cycle

& instruction
decode

000

CSE 370 - Spring 2000 - Computer Organization - 34

instruction
execution

