Quiz 1

CSE 370 Winter 2001

Sample Solutions

1) a) [5 pts] Prove the following equation using Boolean axioms and laws:

$$
\left(\mathrm{x}^{\prime} \oplus \mathrm{y}\right)=(\mathrm{x} \oplus \mathrm{y})^{\prime}
$$

Indicate, at each step, which axiom/law you are applying.
Use this definition for $\oplus: \quad x \oplus y=x y^{\prime}+x^{\prime} y$.

$$
\begin{aligned}
(x \oplus y)^{\prime} & =\left(x y^{\prime}+x^{\prime} y\right)^{\prime} & & \text { definition of } \oplus \\
& =\left(x^{\prime}+y\right)^{*}\left(x+y^{\prime}\right) & & \text { generalized de Morgan's } \\
& =x^{\prime} y^{\prime}+x y & & \text { factoring (12) } \\
& =x^{\prime} y^{\prime}+x^{\prime} y & & \text { involution (4) } \\
& =\left(x^{\prime} \oplus y\right) & & \text { definition of } \oplus
\end{aligned}
$$

b) [5 pts] Consider the function defined by the following Karnaugh map. Find its optimal implementation using AND, OR, XOR and NOT gates with multiple inputs. Strive for the smallest number of gates.

$x, y=$	0,0	0,1	1,1	1,0
$z=0$	1	0	1	0
$z=1$	0	1	0	1

It is $(x \oplus y \oplus z)^{\prime}$.
Can be implemented with a 3 -input $X O R$ gate and a NOT gate.
2) All subproblems of this problem refer to the same function.
a) [5 pts] For the function with the following Karnaugh map, write a minimal S-o-P form:

$x, y=$	0,0	0,1	1,1	1,0
$z, w=0,0$	1	0	0	1
0,1	1	1	0	0
1,1	0	1	1	0
1,0	0	0	1	1

For example, $x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y w+x y z+x y^{\prime} w^{\prime}$.
b) [5 pts] For the same function, write a minimal P-o-S form:

$x, y=$	0,0	0,1	1,1	1,0
$z, w=0,0$	1	0	0	1
0,1	1	1	0	0
1,1	0	1	1	0
1,0	0	0	1	1

For example, $\left(x+y+z^{\prime}\right) *\left(x+y^{\prime}+w\right) *\left(x^{\prime}+y^{\prime}+z\right) *\left(x^{\prime}+y+w^{\prime}\right)$.
c) [3 pts] How many prime implicants does this function have? Indicate all prime implicants on the Karnaugh map.

$x, y=$	0,0	0,1	1,1	1,0
$z, w=0,0$	1	0	0	1
0,1	1	1	0	0
1,1	0	1	1	0
1,0	0	0	1	1

There are 8 prime implicants.
d) [3 pts] Indicate all essential prime implicants on the Karnaugh map.

This function has no essential prime implicants.
3) a) [7 pts] Find the S-o-P form of the following function using de Morgan's law:

$$
\mathrm{f}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\left(\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}\right) *\left(\mathrm{X}^{\prime}+\mathrm{Z}^{\prime}\right)
$$

First, create the $P-o-S$ form of f^{\prime} by making produce of all sums which are not in $f:$

$$
\mathrm{f}^{\prime}=(\mathrm{X}+\mathrm{Y}) *\left(\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}\right) *\left(\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}\right) *\left(\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}\right)
$$

Then, apply de Morgan's law:

$$
f=X^{\prime} Y^{\prime}+X^{\prime} Y Z+X Y^{\prime} Z^{\prime}+X Y Z^{\prime}
$$

b) [2 pts] Using Boolean axioms and laws, simplify the obtained S-o-P form of f .

$$
\begin{aligned}
f & =X^{\prime} Y^{\prime}+X^{\prime} Y Z+X Y^{\prime} Z^{\prime}+X Y Z^{\prime} \\
& =X^{\prime} Y^{\prime} *(1+Z)+X^{\prime} Y Z+X Z^{\prime} *\left(Y^{\prime}+Y\right) \\
& =X^{\prime} Y^{\prime}+X^{\prime} Y^{\prime} Z+X^{\prime} Y Z+X Z^{\prime} \\
& =X^{\prime} Y^{\prime}+X^{\prime} Z+X Z^{\prime}
\end{aligned}
$$

4) $[5 \mathrm{pts}]$ For the following expression:

$$
\left(\mathrm{W}+\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}\right)^{*}\left(\mathrm{~W}^{\prime}+\mathrm{Z}^{\prime}\right)^{*}(\mathrm{~W}+\mathrm{Y})
$$

obtain and simplify its S-o-P form using Boolean axioms and laws.

$$
\begin{aligned}
& \left(W+X^{\prime}+Y^{\prime}\right) *\left(W^{\prime}+Z^{\prime}\right) *(W+Y) \\
= & \left(W+X^{\prime}+Y^{\prime}\right) *\left(W^{\prime} Y+Z^{\prime} W\right) \\
= & W W^{\prime} Y+W W Z^{\prime}+W^{\prime} X^{\prime} Y+W X^{\prime} Z^{\prime}+W Y Y^{\prime}+W Y^{\prime} Z^{\prime} \\
= & W Z^{\prime}+W^{\prime} X^{\prime} Y+W X^{\prime} Z^{\prime}+W Y^{\prime} Z^{\prime} \\
= & W Z^{\prime} *\left(1+X^{\prime}+Y^{\prime}\right)+W^{\prime} X^{\prime} Y \\
= & W Z^{\prime}+W^{\prime} X^{\prime} Y
\end{aligned}
$$

5) [5 pts] Specify a 4 -variable function $f(X, Y, Z, W)$ which has no essential prime implicants and, moreover, its complement, f^{\prime}, has no essential prime implicants either.

This is, for example, the function in Problem 2.

