Combinational logic

H Basic logic
® Boolean algebra, proofs by re-writing, proofs by perfect induction
© Logic functions, truth tables, and switches
® NOT, AND, OR, NAND, NOR, XOR, . . . , minimal set
H Logic realization
$\boxed{\text { two-level logic and canonical forms, incompletely specified functions }}$
\boxtimes multi-level logic, converting between ANDs and ORs
H Simplification
\triangle uniting theorem
© transformations on networks of Boolean functions
\% Time behavior
\% Hardware description languages

Winter 2001 CSE370-11-Combinational Logic

Possible logic functions of two variables

\% There are 16 possible functions of 2 input variables: \triangle in general, there are $2^{* *}\left(2^{* *} n\right)$ functions of n inputs

Winter 2001 CSE370 - II - Combinational Logic

Cost of different logic functions

I Different functions are easier or harder to implement
\triangle each has a cost associated with the number of switches needed $\boxtimes 0$ (F0) and 1 (F15): require 0 switches, directly connect output to low/high $\triangle X(F 3)$ and Y (F5): require 0 switches, output is one of inputs
$\triangle X^{\prime}$ (F12) and Y^{\prime} (F10): require 2 switches for "inverter" or NOT-gate
$\triangle X$ nor Y (F4) and X nand Y (F14): require 4 switches
ΔX or Y (F7) and X and $Y(F 1)$: require 6 switches
$\boxtimes X=Y(F 9)$ and $X \oplus Y(F 6)$: require 16 switches
© thus, because NOT, NOR, and NAND are the cheapest they are the functions we implement the most in practice

Minimal set of functions

If Can we implement all logic functions from NOT, NOR, and NAND? \triangle For example, implementing X and Y is the same as implementing not (X nand Y)
H In fact, we can do it with only NOR or only NAND \triangle NOT is just a NAND or a NOR with both inputs tied together

$$
\begin{array}{cc|ccc|c}
X & Y & X \text { nor } Y & X & Y & X \text { nand } Y \\
\hline 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0
\end{array}
$$

that is, its easy to implement one using the other
$X \operatorname{nand} Y \equiv \underline{\operatorname{not}}((\underline{\operatorname{not}} X) \underline{\operatorname{nor}}(\underline{\operatorname{not}} Y))$
It But lets not moxenero $)$ fast \bar{F}. not $(($ not $X)$ nand (not $Y)$)
\triangle lets look at the mathematical foundation of logic

Winter 2001
CSE370-II-Combinational Logic

$$
\text { 1. the set } \mathrm{B} \text { contains at least two elements: } \mathrm{a}_{t} \mathrm{~b}
$$

2 closure:

$$
a+b \text { is in } B
$$

. commutativity:

$$
\begin{array}{ll}
a+b \text { is in } B & a \cdot b \text { is } \ln B \\
a+b=b+a & a \cdot b=b \cdot a \\
a+(b+c)=(a+b)+c & a \cdot(b \cdot c)=
\end{array}
$$

$$
a+b=b+a
$$

identity $\quad a+(b+c)=(a+b)+c$
$a+0=a \quad(a+b)+c$
. distributivity: $a+(b \cdot c)=(a+b) \cdot(a+c)$
7. complementarity: $a+a^{\prime}=1$
$a \cdot(b \cdot c)=(a \cdot b) \cdot c$
$a \cdot 1=a$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
$a \cdot a^{\prime}=0$
Winter 2001
CSE370-11-Combinational Logic

-

Boolean algebra

If Boolean algebra
$\triangle B=\{0,1\}$
® variables
区 + is logical OR, • is logical AND
\triangle ' is logical NOT
H All algebraic axioms hold

I Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ' t, and •

$$
\begin{aligned}
& \text { Boolean expression that is } \\
& \text { true wen the variahles } X
\end{aligned}
$$

$$
\begin{aligned}
& \text { Boome when the variables X } \\
& \text { true }
\end{aligned}
$$

X, Y are Boolean algebra va riables

$$
\text { and } Y \text { have the same value }
$$ a nd false, otherwise

Winter 2001
CSE370-11-Combinational Logic

Axioms and theorems of Boolean algebra

1. $x+0=x$

1D. $x \cdot 1=x$
2D. $x \cdot 0=0$
D. $x \cdot x=x$

5D. $x \cdot x^{\prime}=0$
6D. $X \cdot Y=Y \bullet X$
7D. $(X \cdot Y) \cdot Z=X \cdot(Y \cdot Z)$

Axioms and theorems of Boolean algebra (cont'd)

H distributivity:
8. $X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z)$ 8D. $X+(Y \cdot Z)=(X+Y) \cdot(X+Z)$
\mathscr{H} uniting:
9. $X \cdot Y+X \cdot Y^{\prime}=X$

9D. $(X+Y) \cdot\left(X+Y^{\prime}\right)=X$
H absorption:
10. $X+X \cdot Y=X$
11. $\left(X+Y^{\prime}\right) \cdot Y=X \bullet Y$

H factoring:
12. $(X+Y) \cdot\left(X^{\prime}+Z\right)=$
concensus:
13. $(X \cdot Y)+(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)=13 D \cdot(X+Y) \cdot(Y+Z) \cdot\left(X^{\prime}+Z\right)=$ $X \cdot Y+X^{\prime} \cdot Z \quad(X+Y) \cdot\left(X^{\prime}+Z\right)$

10D. $X \cdot(X+Y)=X$
11D. $\left(X \cdot Y^{\prime}\right)+Y=X+Y$
12D. $X \cdot Y+X^{\prime} \cdot Z=$
$(x+Z) \cdot\left(X^{\prime}+Y\right)$
\mathscr{H} concensus.

CSE370-11-Combinational Logic

Axioms and theorems of Boolean algebra (cont')

H Duality
\triangle a dual of a Boolean expression is derived by replacing

- by,++ by $\bullet, 0$ by 1 , and 1 by 0 , and leaving variables unchanged \triangle any theorem that can be proven is thus also proven for its dual!
® a meta-theorem (a theorem about theorems)
H duality:

16. $X+Y+\ldots \Leftrightarrow X \bullet Y$ •

Ho generalized duality:
17. $f\left(X_{1}, X_{2}, \ldots, X_{n}, 0,1,+, \bullet\right) \Leftrightarrow f\left(X_{1}, X_{2}, \ldots, X_{n}, 1,0, \bullet,+\right)$

H Different than deMorgan's Law
\triangle this is a statement about theorems
\boxtimes this is not a way to manipulate (re-write) expressions

Proving theorems (rewriting)

If Using the axioms of Boolean algebra:
\boxtimes e.g., prove the theorem: $X \cdot Y+X \cdot Y^{\prime}=X$
 complementarity (5) $\quad X \bullet\left(Y+Y^{\prime}\right) \quad=X \bullet(1)$ identity (1D) $\quad X \bullet(1) \quad=X \rightarrow$
®e.g., prove the theorem: $X+X \cdot Y=X$
identity (1D)
distributivity (8)
identity (2)
identity (1D)

$X+X \cdot Y$	$=X \cdot 1+X \cdot Y$
$X \cdot 1+X \cdot Y$	$=X \cdot(1+Y)$
$X \cdot(1+Y)$	$=X \cdot(1)$
$X \cdot(1)$	$=X \bullet$

Winter 2001
CSE370- II- Combinational Logic

A simple example: 1-bit binary adder

If Inputs: A, B, Carry-in
of Outputs: Sum, Carry-out

Apply the theorems to simplify expressions

H The theorems of Boolean algebra can simplify Boolean expressions ® e.g., full adder's carry-out function (same rules apply to any function)

Cout $=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
$=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n+A B C i n+A B C i n-4$
$=A^{\prime} B C i n+A B C i n+A B^{\prime} C i n+A B C i n+A B C i n$
$=\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n+A B C i n$
$=$ (1) $B C \operatorname{lin}+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n+A B C i n$.
$=B C i n+A B^{\prime} C i n+A B C i n+A B C i n+A B C i n$
$=B C i n+A\left(B^{\prime}+B\right) C i n+A B C i n '+A B C i n$
$=B C i n+A(1) C i n+A B C i n+A B C i n$
$=B C i n+A C i n+A B(C i n '+C i n)$
$=B C i n+A C i n+A B(1)$
$=B C i n+A C i n+A B$

From Boolean expressions to logic gates

\mathscr{H} NOT	X^{\prime}	$\bar{\chi}$	$\sim x$	$x-D 0-y$	$\begin{array}{l\|l} X & Y \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
\mathscr{H} AND	$X \cdot Y$	XY	$X \wedge Y$		x y Z 0 0 0 0 1 0 1 0 0 1 1 1
$\mathscr{H} \mathrm{OR}$	$X+Y$		$X \vee Y$	$x=-z$	\mathbf{X} Y \mathbf{Z} 0 0 0 0 1 1 1 0 1 1 1 1

From Boolean expressions to logic gates (cont'd)

\% NAND	$x=\square-z$	X Y 0 0 0 1 1 0 1 1	$\left\lvert\, \begin{aligned} & Z \\ & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}\right.$	
H NOR	$x=0-z$	X Y 0 0 0 1 1 0 1 1	$\left\lvert\, \begin{aligned} & Z \\ & \hline 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	
$\mathscr{H} \frac{X O R}{X \oplus Y}$		X Y 0 0 0 1 1 0 1 1	$\begin{array}{\|l} z \\ \hline 0 \\ 1 \\ 1 \\ 1 \\ 0 \end{array}$	$X \operatorname{xor} Y=X Y^{\prime}+X^{\prime} Y$ X or Y but not both ("inequality", "difference")
$\text { H } \frac{X N O R}{X=Y}$	$x-\int 0-z$	$\begin{array}{cc} X & Y \\ \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$	$\left\lvert\, \begin{aligned} & Z \\ & \hline 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}\right.$	X xnor $Y=X Y+X^{\prime} Y^{\prime}$ X and Y are the same ("equality", "coincidence")
Winter 2001	CSE370- II-Combinational Logic			20

From Boolean expressions to logic gates（cont＇d）

\％More than one way to map expressions to gates

$$
\triangle \text { e.g., } Z=A^{\prime} \cdot B^{\prime} \cdot(C+D)=\left(A^{\prime} \cdot\left(B^{\prime} \cdot(\underline{C+D})\right)\right)
$$

$$
\frac{\overline{T 2}}{\mathrm{~T} 1}
$$

Which realization is best？

H Reduce number of inputs
$\boxed{\text { literal：input variable（complemented or not）}}$
区can approximate cost of logic gate as 2 transitors per literal \boxtimes why not count inverters？
■ fewer literals means less transistors冈smaller circuits
\triangle fewer inputs implies faster gates
® gates are smaller and thus also faster
\boxtimes fan－ins（\＃of gate inputs）are limited in some technologies
Hi Reduce number of gates
\triangle fewer gates（and the packages they come in）means smaller circuits区directly influences manufacturing costs

Winter 2001

Are all realizations equivalent?

Io Under the same input stimuli, the three alternative implementations have almost the same waveform behavior
® delays are different
区 glitches (hazards) may arise
\boxtimes variations due to differences in number of gate levels and structure
Io The three implementations are functionally equivalent

Winter 2001 CSE370 - II - Combinational Logic

Implementing Boolean functions	
H Technology independent © canonical forms 囚 two-level forms © multi-level forms	
If Technology choices \triangle packages of a few gates ® regular logic \triangle two-level programmable logic © multi-level programmable logic	
Winter 2001 CSE370-11-Combinational Logic	27

Canonical forms

F Truth table is the unique signature of a Boolean function
Ho Many alternative gate realizations may have the same truth table
H Canonical forms
\boxtimes standard forms for a Boolean expression
\triangle provides a unique algebraic signature
\triangle packages of a few gates
® regular logic
\triangle two-level programmable log

Winter 2001
27
Winter 2001

> H Also known as disjunctive normal form
> H Also known as minterm expansion
Winter 2001 CSE370-11-Combinational Logic 29

Sum-of-products canonical form (cont'd)

(or minterm)
\triangle ANDed product of literals - input combination for which output is true © each variable appears exactly once, in true or inverted form (but not both)

Product-of-sums canonical form (cont'd)

H Sum term (or maxterm)
\boxtimes ORed sum of literals - input combination for which output is false
\boxtimes each variable appears exactly once, in true or inverted form (but not both)

Fin canonical form
$F(A, B, C)=\Pi M(0,2,4)$
$=M(0,2,4) \cdot M 4$
$=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
canonical form \neq minimal form
$F(A, B, C)=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
$\begin{aligned}= & (A+B+C)\left(A+B^{\prime}+C\right) \\ & (A+B+C)\left(A^{\prime}+B+C\right)\end{aligned}$
$(A+B+C)\left(A^{\prime}+B+C\right)$ $=(A+C)(B+C)$
CSE370-II-Combinational Logic $\quad 32$

S-o-P, P-o-S, and de Morgan's theorem

H Sum-of-products
$\triangle F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$
H Apply de Morgan's
$\triangle\left(F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}$
$\boxtimes F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$

H Product-of-sums
$\triangle F^{\prime}=\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)$
\% Apply de Morgan's
$\triangle\left(F^{\prime}\right)^{\prime}=\left(\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\right)^{\prime}$ $\triangle F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C$

Winter 2001 CSE370-II-Combinational Logic 33

Mapping between canonical forms

H Minterm to maxterm conversion
\triangle use maxterms whose indices do not appear in minterm expansion \boxtimes e.g., $F(A, B, C)=\Sigma m(1,3,5,6,7)=\Pi M(0,2,4)$
H Maxterm to minterm conversion \boxtimes use minterms whose indices do not appear in maxterm expansion \boxtimes e.g., $F(A, B, C)=\Pi M(0,2,4)=\Sigma \mathrm{m}(1,3,5,6,7)$
H Minterm expansion of F to minterm expansion of F^{\prime} \triangle use minterms whose indices do not appear Δ e.g., $F(A, B, C)=\Sigma m(1,3,5,6,7) \quad F^{\prime}(A, B, C)=\Sigma m(0,2,4)$
H Maxterm expansion of F to maxterm expansion of F^{\prime}
\triangle use maxterms whose indices do not appear
$\triangle e . g ., F(A, B, C)=\Pi M(0,2,4) \quad F^{\prime}(A, B, C)=\Pi M(1,3,5,6,7)$

Winter 2001

Notation for incompletely specified functions

If Don＇t cares and canonical forms
® so far，only represented on－set
® also represent don＇t－care－set
囚 need two of the three sets（on－set，off－set，dc－set）
H Canonical representations of the BCD increment by 1 function：
$\boxtimes Z=m 0+m 2+m 4+m 6+m 8+d 10+d 11+d 12+d 13+d 14+d 15$囚 $Z=\Sigma[m(0,2,4,6,8)+d(10,11,12,13,14,15)]$
$\triangle Z=M 1 \cdot M 3 \cdot M 5 \cdot M 7 \cdot M 9 \cdot D 10 \cdot D 11 \cdot D 12 \cdot D 13 \cdot D 14 \cdot D 15$
$\boxtimes Z=\Pi[M(1,3,5,7,9) \cdot D(10,11,12,13,14,15)]$ CSE370－II－Combinational Logic 38

Simplification of two－level combinational logic

H Finding a minimal sum of products or product of sums realization区 exploit don＇t care information in the process
H Algebraic simplification
\triangle not an algorithmic／systematic procedure
\triangle how do you know when the minimum realization has been found？
H Computer－aided design tools
® precise solutions require very long computation times，especially for functions with many inputs（＞10）
Q heuristic methods employed－＂educated guesses＂to reduce amount of computation and yield good if not best solutions
H Hand methods still relevant
\triangle to understand automatic tools and their strengths and weaknesses
\triangle ability to check results（on small examples）

The uniting theorem

H Key tool to simplification：$A\left(B^{\prime}+B\right)=A$
H Essence of simplification of two－level logic
\boxtimes find two element subsets of the ON －set where only one variable changes its value－this single varying variable can be eliminated and a single product term used to represent both elements
$\quad \mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{AB}^{\prime}=\left(\mathrm{A}^{\prime}+\mathrm{A}\right) \mathrm{B}^{\prime}=\mathrm{B}^{\prime}$
Winter 2001

Winter 2001
CSE370－1I－Combinational Logic

Two-level logic using NAND and NOR gates

It NAND-NAND and NOR-NOR networks

$$
\begin{aligned}
& \boxtimes \text { de Morgan's law: } \quad(A+B)^{\prime}=A^{\prime} \bullet B^{\prime} \\
& \boxtimes \text { written differently: } A+B=\left(A^{\prime} \bullet B^{\prime}\right)^{\prime}
\end{aligned}
$$

If In other words -
\triangle OR is the same as NAND with complemented inputs
\triangle AND is the same as NOR with complemented inputs
\triangle NAND is the same as OR with complemented inputs
\triangle NOR is the same as AND with complemented inputs

Conversion between forms (cont'd)

H Example: verify equivalence of two forms

$$
\begin{aligned}
Z & =\left[(A \cdot B)^{\prime} \cdot(C \cdot D)^{\prime}\right]^{\prime} \\
& =\left[\left(A^{\prime}+B^{\prime}\right) \cdot\left(C^{\prime}+D^{\prime}\right)\right]^{\prime} \\
& =\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right] \\
& =(A \cdot B)+(C \cdot D)
\end{aligned}
$$

Winter 2001
CSE370-1I-Combinational Logic

Examples of using AOI gates

H Example:
$\triangle F=B C^{\prime}+A C^{\prime}+A B$
$\Delta F^{\prime}=A^{\prime} B^{\prime}+A^{\prime} C+B^{\prime} C$
\triangle Implemented by 2-input 3-stack AOI gate
$\boxtimes F=(A+B)\left(A+C^{\prime}\right)(B+C)$
$\Delta F^{\prime}=\left(B^{\prime}+C\right)\left(A^{\prime}+C\right)\left(A^{\prime}+B^{\prime}\right)$
© Implemented by 2-input 3-stack OAI gate

H Example: 4-bit equality function
$\triangle Z=\left(A 0 B 0+A 0^{\prime} B O^{\prime}\right)\left(A 1 B 1+A 1^{\prime} B 1^{\prime}\right)\left(A 2 B 2+A 2^{\prime} B 2\right)\left(A 3 B 3+A 3^{\prime} B 3^{\prime}\right)$

each implemented in a single 2×2 AOI gate
Winter 2001 CSE370-II- Combinational Logic

Examples of using AOI gates (cont'd)

H Example: AOI implementation of 4-bit equality function

Time behavior of combinational networks

H Waveforms
\triangle visualization of values carried on signal wires over time
\boxtimes useful in explaining sequences of events (changes in value)
H Simulation tools are used to create these waveforms
\triangle input to the simulator includes gates and their connections ® input stimulus, that is, input signal waveforms
Hf Some terms
\triangle gate delay - time for change at input to cause change at output
\triangle min delay - typical/nominal delay - max delay
区careful designers design for the worst case
\triangle rise time - time for output to transition from low to high voltage
\triangle fall time - time for output to transition from high to low voltage \triangle pulse width - time that an output stays high or stays low between changes

HDLs

H Abel (circa 1983) - developed by Data-I/O \checkmark targeted to programmable logic devices \triangle not good for much more than state machines
F ISP (circa 1977) - research project at CMU $\boxed{0}$ simulation, but no synthesis
It Verilog (circa 1985) - developed by Gateway (absorbed by Cadence) © simiar to Pascal and C
® delays is only interaction with simulator \triangle fairly efficient and easy to write区IEEE standard
H VHDL (circa 1987)-DOD sponsored standard ■ similar to Ada (emphasis on re-use and maintainability) \triangle simulation semantics visible
© very general but verbose
\triangle IEEE standard

Winter 2001

Structural model	
```module xor_gate (out, a, b); input a, b; output out; wire abar, bbar, t1, t2; inverter invA (abar, a); inverter invB (bbar, b); and_gate and1 (t1, a, bbar); and_gate and2 (t2, b, abar); or_gate or1 (out, t1, t2); endmodule```	
Winter 2001 CSE370-11-Combinational Logic	66



## Simple behavioral model




## Complete Simulation

Io Instantiate stimulus component and device to test in a schematic


## More Complex Behavioral Model

module life (n0, n1, n2, n3, n4, n5, n6, n7, self, out)
input n0, n1, n2, n3, n4, n5, n6, n7, self;
$\begin{array}{ll}\text { output } & \text { out; } \\ \text { reg } & \text { out; }\end{array}$
reg [7:0] neighbors
reg [3:0] count;
reg [3:0] $i$;
assign neighbors $=\{n 7, n 6, n 5, n 4, n 3, n 2, n 1, n 0\} ;$
always @(neighbors or self) begin
count $=0$;
for (i = 0; $i<8 ; i=i+1)$ count $=$ count + neighbors $[i]$;
out $=$ (count $==3$ );
out $=$ out $\mid(($ self $==1) \&($ count $==2))$
end
endmodule

Winter 2001
CSE370 - II - Combinational Logic

## Hardware Description Languages vs. Programming Languages

\% Program structure
© instantiation of multiple components of the same type
$\triangle$ specify interconnections between modules via schematic
$\triangle$ hierarchy of modules (only leaves can be HDL in DesignWorks)
H Assignment
$\triangle$ continuous assignment (logic always computes)
$\triangle$ propagation delay (computation takes time)
$\triangle$ timing of signals is important (when does computation have its effect)
\% Data structures
$\boxtimes$ size explicitly spelled out - no dynamic structures ® no pointers
\% Parallelism
© hardware is naturally parallel (must support multiple threads)
$\boxtimes$ assignments can occur in parallel (not just sequentially)

Winter 2001 CSE370-II-Combinational Logic

## Hardware Description Languages and Combinational Logic

I Modules - specification of inputs, outputs, bidirectional, and internal signals
H Continuous assignment - a gate's output is a function of its inputs at al times (doesn't need to wait to be "called")
H Propagation delay-concept of time and delay in input affecting gate output
If Composition - connecting modules together with wires
H Hierarchy - modules encapsulate functional blocks
H Specification of don't care conditions (accomplished by setting output to "x")

## Combinational logic summary

H Logic functions, truth tables, and switches $\boxed{N O T}$, AND, OR, NAND, NOR XOR $, \ldots, 4$ minimal se
\% Axioms and theorems of Boolean algebra $\boxtimes$ proofs by re-writing and perfect induction
\% Gate logic
networks of Boolean functions and their time behavio
\% Canonical forms
$\triangle$ two-level and incompletely specified functions
\% Simplification
® two-level simplificatio
H Later
囚 automation of simplification
® multi-level logic
Q design case studies
® time behavior

