Combinational logic

☐ Boolean algebra, proofs by re-writing, proofs by perfect induction ☐ Logic functions, truth tables, and switches ☑ NOT, AND, OR, NAND, NOR, XOR, . . . , minimal set

₩ Logic realization

□ two-level logic and canonical forms, incompletely specified functions
□ multi-level logic, converting between ANDs and ORs

¥ <u>Simplification</u>
□ uniting theorem

☐ transformations on networks of Boolean functions

Time behavior

Time behavior

Hardware description languages

CSE370 - II - Combinational Logi

Possible logic functions of two variables # There are 16 possible functions of 2 input variables: # There are 16 possible functions of 2 input variables: # There are 16 possible functions of 2 input variables: # There are 16 possible functions of 2 input variables: # There are 16 possible functions of 2 input variables: # There are 16 possible functions of 2 input variables: # There are 16 possible functions of 2 input variables: # There are 16 possible functions of 2 input variables: # There are 16 possible functions of 2 input variables: # There are 16 possible functions of 2 input variables: # There are 16 possible functions of 2 input variables: # There are 16 possible functions of 2 input variables: # The Possible function function functions of 2 input variables: # The Possible function function

CSE370 - II - Combinational Logi

Cost of different logic functions

Different functions are easier or harder to implement

☐ each has a cost associated with the number of switches needed

△ 0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high

△ X (F3) and Y (F5): require 0 switches, output is one of inputs

☐ X' (F12) and Y' (F10): require 2 switches for "inverter" or NOT-gate ☐ X nor Y (F4) and X nand Y (F14): require 4 switches

△ X or Y (F7) and X and Y (F1): require 6 switches

 \triangle X = Y (F9) and X \oplus Y (F6): require 16 switches

☐ thus, because NOT, NOR, and NAND are the cheapest they are the

functions we implement the most in practice

Minimal set of functions

In fact, we can do it with only NOR or only NAND
□ NOT is just a NAND or a NOR with both inputs tied together

☐ and NAND and NOR are "duals", 1 1 0 that is, its easy to implement one using the other

 $\begin{array}{ll} X \ \underline{\text{nand}} \ Y & \underline{\text{not}} \ (\ (\text{not} \ X) \ \underline{\text{nor}} \ (\text{not} \ Y) \) \\ \text{\$} & \underline{\text{But lets not moYeDoGo}} f_{ast} \overline{=} \ \underline{\text{not}} \ (\ (\underline{\text{not}} \ X) \ \underline{\text{nand}} \ (\underline{\text{not}} \ Y) \) \\ \hline \square \ \text{lets look at the mathematical foundation of logic} \end{array}$

CSE370 - II - Combinational Logic

```
## An algebraic structure consists of

☐ a set of elements B
☐ binary operations { + , • }
☐ and a unary operation { ' }
☐ such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: a + b is in B
3. commutativity: a + b = b + a
4. associativity: a + (b + c) = (a + b) + c
5. identity: a + (b + c) = (a + b) + c
6. distributivity: a + (b + c) = (a + b) • (a + c)
7. complementarity: a + a' = 1

Winter 2001

Winter 2001

### CSE370 - II - Combinational Logic

$ 5
```

Axioms and theorems of Boolean algebra (cont'd)

```
 \frac{\text{distributivity:}}{8. \quad X \bullet (Y + Z) = (X \bullet Y) + (X \bullet Z)} \quad 8D. \quad X + (Y \bullet Z) = (X + Y) \bullet (X + Z) 
\frac{\text{uniting:}}{9. \quad X \cdot Y + X \cdot Y' = X}
                                                                                9D. (X + Y) \cdot (X + Y') = X
 \begin{array}{ll} \text{38} & \underline{\text{absorption}}; \\ 10. \ X + X \bullet Y = X \\ 11. \ (X + Y) \bullet Y = X \bullet Y \end{array} \\ 10D. \ X \bullet (X + Y) = X \\ 11D. \ (X \bullet Y') + Y = X + Y \end{array} 
# factoring: 12. (X + Y) \bullet (X' + Z) = (X \bullet Z + X' \bullet Y) \bullet (X' + Z) \bullet (X \bullet Z + X' \bullet Y)
                                                                                                         (X + Z) • (X' + Y)
# <u>concensus:</u> 13. (X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) =  13D. (X + Y) \bullet (Y + Z) \bullet (X' + Z) =  (X + Y) \bullet (X' + Z) =
```

CSE370 - II - Combinational Logic

Axioms and theorems of Boolean algebra (cont')

```
\frac{\text{de M or gan's:}}{14. (X + Y + ...)'} = X' \cdot Y' \cdot ...
                                                     14D. (X \bullet Y \bullet ...)' = X' + Y' + ...
15. f'(X_1, X_2, ..., X_n, 0, 1, +, \bullet) = f(X_1', X_2', ..., X_n', 1, 0, \bullet, +)
```

★ establishes relationship between • and +

CSE370 - II - Combinational Logic

Axioms and theorems of Boolean algebra (cont')

```
₩ Duality
```

Winter 2001

☐ a dual of a Boolean expression is derived by replacing • by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged $\hfill \triangle$ any theorem that can be proven is thus also proven for its dual! △ a meta-theorem (a theorem about theorems)

 $\begin{array}{ccc} \Re & \underline{\text{generalized duality:}} \\ & 17.\ f\left(X_1, X_2, \dots, X_n, 0, 1, +, \bullet\right) \Leftrightarrow f(X_1, X_2, \dots, X_n, 1, 0, \bullet, +) \end{array}$

Different than deMorgan's Law

 $\hfill \square$ this is a statement about theorems

☐ this is not a way to manipulate (re-write) expressions

Winter 2001

CSE370 - II - Combinational Logic

Proving theorems (rewriting)

Using the axioms of Boolean algebra: \triangle e.a., prove the theorem: $X \bullet Y + X \bullet Y' = X$

distributivity (8) complementarity (5) $X \bullet Y + X \bullet Y' = X \bullet (Y + Y')$ $X \bullet (Y + Y') = X \bullet (1)$ $X \bullet (1) = X =$ identity (1D)

 $X + X \bullet Y = X$ □ e.g., prove the theorem:

> identity (1D) $\begin{array}{ccccccc} X + X \bullet Y & = & X \bullet 1 + X \bullet Y \\ X \bullet 1 + X \bullet Y & = & X \bullet (1 + Y) \\ X \bullet (1 + Y) & = & X \bullet (1) \\ X \bullet (1) & = & X - \end{array}$ distributivity (8) identity (2) identity (1D)

Winter 2001 CSE370 - II - Combinational Logic

Which is the best realization? (cont'd)

- - ☐ fewer level of gates implies reduced signal propagation delays ☐ minimum delay configuration typically requires more gates ⊠wider, less deep circuits
- ₩ How do we explore tradeoffs between increased circuit delay and size?

 △ automated tools to generate different solutions

 - ☐ logic minimization: reduce number of gates and complexity
 - ☐ logic optimization: reduction while trading off against delay

Are all realizations equivalent?

- # Under the same input stimuli, the three alternative implementations have almost the same waveform behavior

 ☐ delays are different

 - ☐ glitches (hazards) may arise
- 🖾 variations due to differences in number of gate levels and structure
- ★ The three implementations are functionally equivalent

Implementing Boolean functions

- 第 Technology independent
 - □ canonical forms

 - ☐ multi-level forms
- ★ Technology choices
 - ☐ packages of a few gates ☐ regular logic

 - ☐ two-level programmable logic
 - ☐ multi-level programmable logic

Canonical forms

- **※** Truth table is the unique signature of a Boolean function
- # Many alternative gate realizations may have the same truth table
- ₩ Canonical forms
 - □ standard forms for a Boolean expression
 - ☐ provides a unique algebraic signature

**Sum-of-products □ F' = A'B'C' + A'BC' + AB'C' **Apply de Morgan's □ (F')' = (A'B'C' + A'BC' + AB'C')' □ F = (A + B + C) (A + B' + C) (A' + B + C) **Product-of-sums □ F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C') **Apply de Morgan's □ (F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))' □ F = A'B'C + A'BC + A'B'C + A'BC' + A'BC

Notation for incompletely specified functions

★ Don't cares and canonical forms

☐ so far, only represented on-set ☐ also represent don't-care-set

☐ need two of the three sets (on-set, off-set, dc-set)

Canonical representations of the BCD increment by 1 function:

$$\triangle$$
 Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15

$$\triangle$$
 Z = Σ [m(0,2,4,6,8) + d(10,11,12,13,14,15)]

 \triangle Z = Π [M(1,3,5,7,9) • D(10,11,12,13,14,15)]

CSE370 - II - Combinational Logi

Simplification of two-level combinational logic

- # Finding a minimal sum of products or product of sums realization
- exploit don't care information in the process
- # Algebraic simplification

 - ☐ not an algorithmic/systematic procedure
 ☐ how do you know when the minimum realization has been found?
- 第 <u>Computer-aided design tools</u>
 - ☐ precise solutions require very long computation times, especially for functions with many inputs (> 10)
 ☐ heuristic methods employed "educated guesses" to reduce amount of computation and yield good if not best solutions
- 第 Hand methods still relevant
 - ☐ to understand automatic tools and their strengths and weaknesses
 - ☐ ability to check results (on small examples)

CSE370 - II - Combinational Logic

The uniting theorem

- # Key tool to simplification: A (B' + B) = A
- ★ Essence of simplification of two-level logic
 - ☐ find two element subsets of the ON-set where only one variable changes its value this single varying variable can be eliminated and a single product term used to represent both elements

$$F = A'B' + AB' = (A' + A)B' = B'$$

Summary for multi-level logic

₩ <u>Advantages</u>

□ circuits may be smaller

☐ gates have smaller fan-in

☐ circuits may be faster

₩ <u>Disadvantages</u>

☐ more difficult to design

 $\hfill \triangle$ tools for optimization are not as good as for two-level

□ analysis is more complex

CSE370 - II - Combinational Logic

Time behavior of combinational networks

₩ <u>Waveforms</u>

☑ visualization of values carried on signal wires over time ☐ useful in explaining sequences of events (changes in value)

★ Simulation tools are used to create these waveforms
 ☐ input to the simulator includes gates and their connections

☐ input stimulus, that is, input signal waveforms

₩ Some terms

☐ gate delay — time for change at input to cause change at output ⊠min delay – typical/nominal delay – max delay $oxed{\boxtimes}$ careful designers design for the worst case

☐ rise time — time for output to transition from low to high voltage

☐ fall time — time for output to transition from high to low voltage

riangle pulse width — time that an output stays high σ stays low between changes

Hardware description languages

- 第 Describe hardware at varying levels of abstraction
- ₩ Structural description
 - ☐ textual replacement for schematic $\hfill \triangle$ hierarchical composition of modules from primitives
- # Behavioral/functional description ☐ synthesis generates circuit for module
- ₩ Simulation semantics

CSE370 - II - Combinational Logic

HDLs

- ** Abel (circa 1983) developed by Data-I/O
 □ targeted to programmable logic devices
 □ not good for much more than state machines
- # ISP (circa 1977) research project at CMU

 □ simulation, but no synthesis
- * Verilog (circa 1985) developed by Gateway (absorbed by Cadence)
 - ☑ similar to Pascal and C
 - ☐ delays is only interaction with simulator ☐ fairly efficient and easy to write ☐ IEEE standard
- ¾ VHDL (circa 1987) DoD sponsαred standard
 △ similar to Ada (emphasis on re-use and maintainability)
 △ simulation semantics visible
 △ very general but verbose
 △ IEEE standard

```
      Werill og

      % Supports structural and behavioral descriptions

      % Structural

      △ explicit structure of the circuit

      △ e.g., each logic gate instantiated and connected to others

      % Behaviαal

      △ program describes input/output behaviαr of circuit

      △ many structural implementations could have same behaviαr

      △ e.g., different implementation of one Boolean function

      % We'll only be using behaviαral Verilog in DesignWorks

      △ rely on schematic when we want structural descriptions
```

```
module xor_gate (out, a, b);
input a, b;
output out;
wire abar, bbar, t1, t2;
inverter invA (abar, a);
inverter invB (bbar, b);
and gate and1 (t1, a, bbar);
and gate and2 (t2, b, abar);
or_gate or1 (out, t1, t2);
endmodule

Where 2001 CSE370-II-CombinationalLogic 66
```

```
Simple behavioral model
₩ Continuous assignment
  module xor_gate (out, a, b);
     input
                       a, b;
     output
                        out;
                                                   simulation register -
keeps track of
     reg
                        out;
                                                   value of signal
     assign #6 out = a ^ b;
  endmodule
                                     delay from input change
to output change
Winter 2001
                          CSE370 - II - Combinational Logic
```

```
Simple behavioral model

# always block

module xor_gate (out, a, b);
input a, b;
output out;
reg out;

always @(a or b) begin
#6 out = a ^ b;
end

endmodule

| specifies when block is executed |
ie. triggered by which signals

Winter 2001 | CSE370-II- Combinational Logic | 68
```

```
Driving a simulation
module stimulus (x, y);
                  х, у;
                                     2-bit vector
   reg [1:0]
                   cnt;
                                      initial block executed
   initial begin -
                                      only once at start
    cnt = 0;
                                     of simulation
     repeat (4) begin
#10 cnt = cnt + 1;
       $display ("@ time=%d, x=%b, y=%b, cnt=%b",
         $time, x, y, cnt); end
     #10 $finish;
                                          print to a console
   end
   assign x = cnt[1];
                                      directive to stop
   assign y = cnt[0];
endmodule
                      CSE370 - II - Combinational Logic
```



```
module Comparel (A, B, Equal, Alarger, Blarger);
input A, B;
output Equal, Alarger, Blarger;
assign #5 Equal = (A & B) | (~A & ~B);
assign #3 Alarger = (A & ~B);
assign #3 Blarger = (~A & B);
endmodule
```

Hardware Description Languages vs. **Programming Languages**

- ₩ Program structure

 - ☐ instantiation of multiple components of the same type ☐ specify interconnections between modules via schematic
 - ☐ hierarchy of modules (only leaves can be HDL in DesignWorks)
- ¥ Assignment□ continuous assignment (logic always computes)
 - ☐ propagation delay (computation takes time)
 - ☐ timing of signals is important (when does computation have its effect)
- ₩ Data structures
 - ☑ size explicitly spelled out no dynamic structures
 - riangle no pointers
- ₩ Parallelism
 - ☐ hardware is naturally parallel (must support multiple threads)
 - △ assignments can occur in parallel (not just sequentially)

CSE370 - II - Combinational Logic

Hardware Description Languages and Combinational Logic

- # Modules specification of inputs, outputs, bidirectional, and internal signals
- times (doesn't need to wait to be "called")
- # Propagation delay- concept of time and delay in input affecting gate output
- # Composition connecting modules together with wires
- # Hierarchy modules encapsulate functional blocks
- # Specification of don't care conditions (accomplished by setting output to "x").

 # Specification of don't care conditions (accomplished by setting output to "x").

CSE370 - II - Combinational Logi

Combinational logic summary

- **%** Logic functions, truth tables, and switches ☑ NOT, AND, OR, NAND, NOR, XOR, . . . , minimal set
- Axioms and theorems of Boolean algebra
 proofs by re-writing and perfect induction

- **≋** Simplification
- ☑ two-level simplification
- Later
 △ automation of simplification
 □ multi-level logic
 △ design case studies
 ☑ time behavior