
Winter 2001 CSE370 - III - Combinational Logic Technologies 1

Combinational Logic Technologies

� Standard gates

� gate packages

� cell libraries

� Regular logic

�multiplexers

� decoders 

� Two-level programmable logic

� PALs

� PLAs

�ROMs

Winter 2001 CSE370 - III - Combinational Logic Technologies 2

Random logic

� Transistors quickly integrated into logic gates (1960s)

� Catalog of common gates (1970s)

� Texas Instruments Logic Data Book – the yellow bible

� all common packages listed and characterized (delays, power)

� typical packages: 

⌧in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates

� Today, very few parts are still in use

� However, parts libraries exist for chip design

� designers reuse already characterized logic gates on chips

� same reasons as before

� difference is that the parts don’t exist in physical inventory – created as 
needed



Winter 2001 CSE370 - III - Combinational Logic Technologies 3

Random logic

� Too hard to figure out exactly what gates to use

�map from logic to NAND/NOR networks

� determine minimum number of packages

⌧slight changes to logic function could decrease cost

� Changes to difficult to realize

� need to rewire parts

�may need new parts

� design with spares (few extra inverters and gates on every board)

Winter 2001 CSE370 - III - Combinational Logic Technologies 4

Regular logic

� Need to make design faster

� Need to make engineering changes easier to make

� Simpler for designers to understand and map to functionality

� harder to think in terms of specific gates

� better to think in terms of a large multi-purpose block



Winter 2001 CSE370 - III - Combinational Logic Technologies 5

multiplexer demultiplexer 4x4 switch

control control

Making connections

� Direct point-to-point connections between gates

�wires we've seen so far

� Route one of many inputs to a single output --- multiplexer

� Route a single input to one of many outputs --- demultiplexer

Winter 2001 CSE370 - III - Combinational Logic Technologies 6

Mux and demux

� Switch implementation of multiplexers and demultiplexers

� can be composed to make arbitrary size switching networks

� used to implement multiple-source/multiple-destination interconnections

A

B

Y

Z

A

B

Y

Z



Winter 2001 CSE370 - III - Combinational Logic Technologies 7

multiple input sources

multiple output destinations

MUX

A B

Sum

Sa

Ss

Sb

B0

MUX

DEMUX

Mux and demux (cont'd)

� Uses of multiplexers/demultiplexers in multi-point connections

B1A0 A1

S0 S1

Winter 2001 CSE370 - III - Combinational Logic Technologies 8

two alternative forms
for a 2:1 Mux truth table

functional form

logical form

A Z

0 I0
1 I1

I1 I0 A Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Z = A' I0 + A I1

Multiplexers/selectors

� Multiplexers/selectors: general concept

� 2n data inputs, n control inputs (called "selects"), 1 output

� used to connect 2n points to a single point

� control signal pattern forms binary index of input connected to output



Winter 2001 CSE370 - III - Combinational Logic Technologies 9

2   -1

I0
I1
I2
I3
I4
I5
I6
I7

A  B  C

8:1
mux

Z

I0
I1
I2
I3

A  B

4:1
mux

ZI0
I1

A

2:1
mux

Z

k=0

n

Multiplexers/selectors (cont'd)

� 2:1 mux: Z = A' I0 + A I1

� 4:1 mux: Z = A' B' I0 + A' B I1 + A B' I2 + A B I3

� 8:1 mux: Z = A' B' C' I0 + A' B' C I1 + A' B C' I2 + A' B C I3 +
A B' C' I4 + A B' C I5  + A B C' I6  + A B C I7

� In general: Z = Σ (mkIk)

� in minterm shorthand form for a 2n:1 Mux

Winter 2001 CSE370 - III - Combinational Logic Technologies 10

Gate level implementation of muxes

� 2:1 mux

� 4:1 mux



Winter 2001 CSE370 - III - Combinational Logic Technologies 11

control signals B and C simultaneously choose 
one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the
upper or lower mux's output to gate to Z

alternative

implementation

C

Z

A  B

4:1
mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1
mux

Cascading multiplexers

� Large multiplexers can be implemented by cascading smaller ones

Z

I0
I1
I2
I3

A

I4
I5
I6
I7

B  C

4:1
mux

4:1
mux

2:1
mux

8:1
mux

Winter 2001 CSE370 - III - Combinational Logic Technologies 12
CA B

0
1
2
3
4
5
6
7

1
0
1
0
0
0
1
1

S2

8:1 MUX

S1 S0

F

Multiplexers as general-purpose logic

� A 2n:1 multiplexer can implement any function of n variables

�with the variables used as control inputs and

� the data inputs tied to 0 or 1

� in essence, a lookup table

� Example:

� F(A,B,C) = m0 + m2 + m6 + m7
= A'B'C' + A'BC' + ABC' + ABC
= A'B'(C') + A'B(C') + AB'(0) + AB(1)



Winter 2001 CSE370 - III - Combinational Logic Technologies 13

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

C'

C'

0

1 A B

S1 S0

F
0
1
2
3

4:1 MUX

C'
C'
0
1

F

CA B

0
1
2
3
4
5
6
7

1
0
1
0
0
0
1
1

S2

8:1 MUX

S1 S0

Multiplexers as general-purpose logic (cont’d)

� A 2n-1:1 multiplexer can implement any function of n variables

�with n-1 variables used as control inputs and

� the data inputs tied to the last variable or its complement

� Example:

� F(A,B,C) = m0 + m2 + m6 + m7
= A'B'C' + A'BC' + ABC' + ABC
= A'B'(C') + A'B(C') + AB'(0) + AB(1)

Winter 2001 CSE370 - III - Combinational Logic Technologies 14

n-1 mux control 
variables

single mux data 
variable

four possible
configurations
of truth table
rows can be
expressed as
a function of In

choose A,B,C as control 
variables

multiplexer implementation

I0 I1 . . . In-1 In F

. . . . 0 0 0 1 1

. . . . 1 0 1 0 1

0 In In' 1

Multiplexers as general-purpose logic (cont’d)

� Generalization

� Example: G(A,B,C,D)
can be implemented
by an 8:1 MUX

CA B

0
1
2
3
4
5
6
7

1
D
0
1
D’
D
D’
D’

S2

8:1 MUX

S1 S0

A B C D G
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

1

D

0

1

D'

D

D’

D’



Winter 2001 CSE370 - III - Combinational Logic Technologies 15

Activity

� Map the following equation to an 4:1 multiplexer using a minimum of 
external gates:

A B C D Z
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

0 when B’C’

D’ when B’C

A when BC’

1 when BC

Z = B’C’(0) + B’C(D’) + BC’(A) + BC(1)

B C

S1 S0

F
0
1
2
3

4:1 MUX

0
D’
A
1

Winter 2001 CSE370 - III - Combinational Logic Technologies 16

1:2 Decoder:
O0 = G • S’
O1 = G • S 

2:4 Decoder: 
O0 = G • S1’ • S0’

O1 = G • S1’ • S0
O2 = G • S1  • S0’
O3 = G • S1  • S0

3:8 Decoder:   
O0 = G • S2’ • S1’ • S0’
O1 = G • S2’ • S1’ • S0
O2 = G • S2’ • S1  • S0’
O3 = G • S2’ • S1  • S0
O4 = G • S2  • S1’ • S0’

O5 = G • S2  • S1’ • S0
O6 = G • S2  • S1  • S0’
O7 = G • S2  • S1  • S0

Demultiplexers/decoders

� Decoders/demultiplexers: general concept

� single data input, n control inputs, 2n outputs

� control inputs (called “selects” (S)) represent binary index of output to 
which the input is connected

� data input usually called “enable” (G)



Winter 2001 CSE370 - III - Combinational Logic Technologies 17

active-high 
enable

active-low 
enable

active-high 
enable

active-low 
enable

O0G

S

O1

O0\G

S

O1

S1

O2

O3

O0
G

O1

S0 S1

O2

O3

O0\G

O1

S0

Gate level implementation of demultiplexers

� 1:2 decoders

� 2:4 decoders

Winter 2001 CSE370 - III - Combinational Logic Technologies 18

demultiplexer generates appropriate
minterm based on control signals
(it "decodes" control signals)

Demultiplexers as general-purpose logic

� A n:2n decoder can implement any function of n variables

�with the variables used as control inputs

� the enable inputs tied to 1 and

� the appropriate minterms summed to form the function

A'B'C'
A'B'C
A'BC'
A'BC
AB'C'
AB'C
ABC'
ABC

CA B

0
1
2
3
4
5
6
7

S2

3:8 DEC

S1 S0

“1”



Winter 2001 CSE370 - III - Combinational Logic Technologies 19

F1

F2

F3

Demultiplexers as general-purpose logic (cont’d)

� F1 = A' B C' D + A' B' C D + A B C D

� F2 = A B C' D’ + A B C

� F3 = (A' + B' + C' + D')

A B

0 A'B'C'D'
1 A'B'C'D
2 A'B'CD'
3 A'B'CD
4 A'BC'D'
5 A'BC'D
6 A'BCD'
7 A'BCD
8 AB'C'D'
9 AB'C'D
10 AB'CD'
11 AB'CD
12 ABC'D'
13 ABC'D
14 ABCD'
15 ABCD

4:16
DECEnable

C D

Winter 2001 CSE370 - III - Combinational Logic Technologies 20

0 A'B'C'D'E'
1
2
3
4
5
6
7

S2

3:8 DEC

S1 S0

A B

0
1
2
3S1

2:4 DEC

S0

F

0
1
2 A'BC'DE'
3
4
5
6
7

S2

3:8 DEC

S1 S0

EC D

0 AB'C'D'E'
1
2
3
4
5
6
7 AB'CDE

Cascading decoders

� 5:32 decoder

� 1x2:4 decoder

� 4x3:8 decoders

3:8 DEC

0
1
2
3
4
5
6
7 ABCDE

EC D

S2 S1 S0 S2

3:8 DEC

S1 S0



Winter 2001 CSE370 - III - Combinational Logic Technologies 21

•   •   •

inputs

AND

array

•   •   •

outputs

OR

arrayproduct

terms

Programmable logic arrays

� Pre-fabricated building block of many AND/OR gates

� actually NOR or NAND

� "personalized" by making or breaking connections among the gates

� programmable array block diagram for sum of products form

Winter 2001 CSE370 - III - Combinational Logic Technologies 22

example:

F0 = A  + B' C'
F1 = A C'  +  A B
F2 = B' C'  +  A B
F3 = B' C  +  A

personality matrix
1 = uncomplemented in term
0 = complemented in term
– = does not participate

1 = term connected to output
0 = no connection to output

input side:

output side:

product inputs outputs

term A B C F0 F1 F2 F3

AB 1 1 – 0 1 1 0

B'C – 0 1 0 0 0 1

AC' 1 – 0 0 1 0 0

B'C' – 0 0 1 0 1 0

A 1 – – 1 0 0 1
reuse of terms

Enabling concept

� Shared product terms among outputs



Winter 2001 CSE370 - III - Combinational Logic Technologies 23

Before programming

� All possible connections are available before "programming"

� in reality, all AND and OR gates are NANDs

Winter 2001 CSE370 - III - Combinational Logic Technologies 24

A B C

F1 F2 F3F0

AB

B'C

AC'

B'C'

A

After programming

� Unwanted connections are "blown"

� fuse (normally connected, break unwanted ones)

� anti-fuse (normally disconnected, make wanted connections)



Winter 2001 CSE370 - III - Combinational Logic Technologies 25

notation for implementing

F0 = A B  +  A' B'

F1 = C D'  +  C' D

AB+A'B'
CD'+C'D

AB

A'B'

CD'

C'D

A B C D

Alternate representation for high fan-in structures

� Short-hand notation so we don't have to draw all the wires

� signifies a connection is present and perpendicular signal is an input 
to gate

Winter 2001 CSE370 - III - Combinational Logic Technologies 26

A B C F1 F2 F3 F4 F5 F6
0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1
1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 1 1

A'B'C'

A'B'C

A'BC'

A'BC

AB'C'

AB'C

ABC'

ABC

A B C

F1 F2 F3 F4 F5
F6

full decoder as for memory address

bits stored in memory

Programmable logic array example

� Multiple functions of A, B, C

� F1 = A B C

� F2 = A + B + C

� F3 = A' B' C'

� F4 = A' + B' + C'

� F5 = A xor B xor C

� F6 = A xnor B xnor C



Winter 2001 CSE370 - III - Combinational Logic Technologies 27

a given column of the OR array 
has access to only a subset of 
the possible product terms

PALs and PLAs

� Programmable logic array (PLA)

�what we've seen so far

� unconstrained fully-general AND and OR arrays

� Programmable array logic (PAL)

� constrained topology of the OR array

� innovation by Monolithic Memories

� faster and smaller OR plane

Winter 2001 CSE370 - III - Combinational Logic Technologies 28

minimized functions:

W = A + B D + B C
X = B C'
Y = B + C
Z = A'B'C'D + B C D + A D' + B' C D'

A B C D W X Y Z
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0
1 0 1 – – – – –
1 1 – – – – – –

PALs and PLAs: design example

� BCD to Gray code converter



Winter 2001 CSE370 - III - Combinational Logic Technologies 29

not a particularly good
candidate for PAL/PLA

implementation since no terms 
are shared among outputs

however, much more compact 
and regular implementation 
when compared with discrete 

AND and OR gates

A B C D

minimized functions:

W = A + B D + B C
X = B C'
Y = B + C
Z = A'B'C'D + B C D + A D' + B' C D'

PALs and PLAs: design example (cont’d)

� Code converter: programmed PLA

A

BD

BC

BC'

B

C

A'B'C'D

BCD

AD'

BCD'

W X Y Z

Winter 2001 CSE370 - III - Combinational Logic Technologies 30

4 product terms 

per each OR gate

A

BD

BC

0

BC'

0

0

0

B

C

0

0

A'B'C'D

BCD

AD'

B'CD'

W X Y Z

A B C D

PALs and PLAs: design example (cont’d)

� Code converter: programmed PAL



Winter 2001 CSE370 - III - Combinational Logic Technologies 31

W

X

Y

Z

B

B

B

B

B

B

\B
C

C

C

C

C
A

A
A

D

D

D

\D

\D

PALs and PLAs: design example (cont’d)

� Code converter: NAND gate implementation

� loss or regularity, harder to understand

� harder to make changes

Winter 2001 CSE370 - III - Combinational Logic Technologies 32
EQ NE LT GT

A'B'C'D'

A'BC'D

ABCD

AB'CD'

AC'

A'C

B'D

BD'

A'B'D

B'CD

ABC

BC'D'

A B C D

PALs and PLAs: another design example

� Magnitude comparator

A B C D EQ NE LT GT
0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 1 0 0 0
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 1 0 1
1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 1 0 1
1 1 0 1 0 1 0 1
1 1 1 0 0 1 0 1
1 1 1 1 1 0 0 0

minimized functions:
EQ = A’B’C’D’ + A’BC’D + ABCD + AB’CD’     NE = AC’ + A’C + B’D + BD’
LT = A’C + A’B’D + B’CD                            GT = AC’ + ABC + BC’D’



Winter 2001 CSE370 - III - Combinational Logic Technologies 33

Activity

� Map the following functions to the PLA below:

�W = AB + A’C’ + BC’

� X = ABC + AB’ + A’B

� Y = ABC’ + BC + B’C’

A B C

W X Y

Winter 2001 CSE370 - III - Combinational Logic Technologies 34

Activity (cont’d)

� 9 terms won’t fit in a 7 term PLA

� can apply concensus theorem
to W to simplify to:
W = AB + A’C’

� 8 terms wont’ fit in a 7 term PLA

� observe that AB = ABC + ABC’

� can rewrite W to reuse terms:
W = ABC + ABC’ + A’C’

� Now it fits

� W = ABC + ABC’ + A’C’

� X = ABC + AB’ + A’B

� Y = ABC’ + BC + B’C’

� This is called technology mapping

� manipulating logic functions

so that they can use available 
resources

ABC

ABC’

A’C’

AB’

A’B

BC

B’C’

A B C

W X Y



Winter 2001 CSE370 - III - Combinational Logic Technologies 35

decoder

0 n-1

Address

2   -1
n

0

1 1 1 1

word[i] = 0011

word[j] = 1010

bit lines (normally pulled to 1 through 
resistor – selectively connected to 0 
by word line controlled switches)

j

i

internal organization

word lines (only one 
is active – decoder is 
just right for this)

Read-only memories

� Two dimensional array of 1s and 0s

� entry (row) is called a "word"

�width of row = word-size

� index is called an "address"

� address is input

� selected word is output

Winter 2001 CSE370 - III - Combinational Logic Technologies 36

F0 = A' B' C  +  A B' C'  +  A B' C

F1 = A' B' C  +  A' B C'  +  A B C

F2 = A' B' C'  +  A' B' C  +  A B' C'

F3 = A' B C  +  A B' C'  + A B C'

truth table

A B C F0 F1 F2 F3
0 0 0 0 0 1 0
0 0 1 1 1 1 0
0 1 0 0 1 0 0
0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 1 0 1 0 0

block diagram

ROM
8 words x 4 bits/word

address outputs
A B C F0F1F2F3

ROMs and combinational logic

� Combinational logic implementation (two-level canonical form) using a ROM



Winter 2001 CSE370 - III - Combinational Logic Technologies 37

ROM structure

� Similar to a PLA structure but with a fully decoded AND array

� completely flexible OR array (unlike PAL)

n address lines

•   •   •

inputs

decoder 2n word

lines

•   •   •

outputs

memory
array

(2n words
by m bits)

m data lines

Winter 2001 CSE370 - III - Combinational Logic Technologies 38

ROM vs. PLA

� ROM approach advantageous when

� design time is short (no need to minimize output functions)

�most input combinations are needed (e.g., code converters)

� little sharing of product terms among output functions

� ROM problems

� size doubles for each additional input

� can't exploit don't cares

� PLA approach advantageous when

� design tools are available for multi-output minimization

� there are relatively few unique minterm combinations

�many minterms are shared among the output functions

� PAL problems

� constrained fan-ins on OR plane



Winter 2001 CSE370 - III - Combinational Logic Technologies 39

Regular logic structures for two-level logic

� ROM – full AND plane, general OR plane

� cheap (high-volume component)

� can implement any function of n inputs

�medium speed

� PAL – programmable AND plane, fixed OR plane

� intermediate cost

� can implement functions limited by number of terms

� high speed (only one programmable plane that is much smaller than 
ROM's decoder)

� PLA – programmable AND and OR planes

�most expensive (most complex in design, need more sophisticated tools)

� can implement any function up to a product term limit

� slow (two programmable planes)

Winter 2001 CSE370 - III - Combinational Logic Technologies 40

Regular logic structures for multi-level logic

� Difficult to devise a regular structure for arbitrary connections between a 
large set of different types of gates

� efficiency/speed concerns for such a structure

� in 467 you'll learn about field programmable gate arrays (FPGAs) that 
are just such programmable multi-level structures

⌧programmable multiplexers for wiring

⌧lookup tables for logic functions (programming fills in the table)

⌧multi-purpose cells (utilization is the big issue)

� Use multiple levels of PALs/PLAs/ROMs

� output intermediate result

�make it an input to be used in further logic



Winter 2001 CSE370 - III - Combinational Logic Technologies 41

Combinational logic technology summary

� Random logic

� Single gates or in groups

� conversion to NAND-NAND and NOR-NOR networks

� transition from simple gates to more complex gate building blocks

� reduced gate count, fan-ins, potentially faster

�more levels, harder to design

� Time response in combinational networks

� gate delays and timing waveforms

� hazards/glitches (what they are and why they happen)

� Regular logic

�multiplexers/decoders

�ROMs

� PLAs/PALs

� advantages/disadvantages of each


