
Winter 2001 CSE370 - VI - Sequential Logic 1

Sequential logic

Sequential circuits
simple circuits with feedback
latches
edge-triggered flip-flops

Timing methodologies
cascading flip-flops for proper operation
clock skew

Asynchronous inputs
metastability and synchronization

Basic registers
shift registers
simple counters

Hardware description languages and sequential logic

Winter 2001 CSE370 - VI - Sequential Logic 2

C1 C2 C3

comparator

value

equal

multiplexer

reset

open/closed

new equal

mux
control

clock

comb. logic

state

Sequential circuits

Circuits with feedback
outputs = f(inputs, past inputs, past outputs)
basis for building "memory" into logic circuits
door combination lock is an example of a sequential circuit
⌧state is memory
⌧state is an "output" and an "input" to combinational logic
⌧combination storage elements are also memory

Winter 2001 CSE370 - VI - Sequential Logic 3

X1
X2
•
•
•

Xn

switching
network

Z1
Z2
•
•
•

Zn

Circuits with feedback

How to control feedback?
what stops values from cycling around endlessly

Winter 2001 CSE370 - VI - Sequential Logic 4

"remember"

"load"
"data" "stored value"

"0"

"1"

"stored value"

Simplest circuits with feedback

Two inverters form a static memory cell
will hold value as long as it has power applied

How to get a new value into the memory cell?
selectively break feedback path
load new value into cell

Winter 2001 CSE370 - VI - Sequential Logic 5

R

S

Q

Q'

R
S

Q

R'
S'

Q
Q

Q'

S'

R'

Memory with cross-coupled gates

Cross-coupled NOR gates
similar to inverter pair, with capability to force output to 0 (reset=1) or
1 (set=1)

Cross-coupled NAND gates
similar to inverter pair, with capability to force output to 0 (reset=0) or
1 (set=0)

Winter 2001 CSE370 - VI - Sequential Logic 6

Reset Hold Set SetReset Race

R

S

Q

\Q

100

Timing behavior

R

S

Q

Q'

Winter 2001 CSE370 - VI - Sequential Logic 7

S R Q
0 0 hold
0 1 0
1 0 1
1 1 unstable

State behavior or R-S latch

Truth table of R-S latch behavior

Q Q'
0 1

Q Q'
1 0

Q Q'
0 0

Q Q'
1 1

Winter 2001 CSE370 - VI - Sequential Logic 8

Theoretical R-S latch behavior

State diagram
states: possible values
transitions: changes
based on inputs

Q Q'
0 1

Q Q'
1 0

Q Q'
0 0

Q Q'
1 1

SR=00
SR=11SR=00

SR=10

SR=01
SR=00
SR=10

SR=00
SR=01

SR=11 SR=11

SR=10SR=01

SR=01 SR=10

SR=11

possible oscillation
between states 00 and 11

Winter 2001 CSE370 - VI - Sequential Logic 9

Observed R-S latch behavior

Very difficult to observe R-S latch in the 1-1 state
one of R or S usually changes first

Ambiguously returns to state 0-1 or 1-0
a so-called "race condition"
or non-deterministic transition

SR=00SR=00

Q Q'
0 1

Q Q'
1 0

Q Q'
0 0

SR=10

SR=01
SR=00
SR=10

SR=00
SR=01

SR=11 SR=11

SR=01 SR=10

SR=11

Winter 2001 CSE370 - VI - Sequential Logic 10

Q(t+∆)

R
S

Q(t)

S R Q(t) Q(t+∆)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

hold

reset

set

not allowed characteristic equation
Q(t+∆) = S + R’ Q(t)

R-S latch analysis

Break feedback path

R

S

Q

Q'

0 0

1 0

X 1

X 1Q(t)

R

S

Winter 2001 CSE370 - VI - Sequential Logic 11

R’

S’ Q

Q'

Activity: R-S latch using NAND gates

characteristic equation
Q(t+∆) = S + R’ Q(t)

R’
S’

Q(t)

0 0

1 0

X 1

X 1Q(t)

R

S

S R S’ R’ Q(t) Q(t+∆)
0 0 1 1 0 0
0 0 1 1 1 1
0 1 1 0 0 0
0 1 1 0 1 0
1 0 0 1 0 1
1 0 0 1 1 1
1 1 0 0 0 X
1 1 0 0 1 X

hold

reset

set

not allowed

Winter 2001 CSE370 - VI - Sequential Logic 12

enable'

S'
Q'

Q
R' R

S

Gated R-S latch

Control when R and S
inputs matter

otherwise, the
slightest glitch on R
or S while enable is
low could cause
change in value
stored

Set Reset

S'
R'
enable'
Q
Q'

100

Winter 2001 CSE370 - VI - Sequential Logic 13

period

duty cycle (in this case, 50%)

Clocks

Used to keep time
wait long enough for inputs (R' and S') to settle
then allow to have effect on value stored

Clocks are regular periodic signals
period (time between ticks)
duty-cycle (time clock is high between ticks - expressed as % of period)

Winter 2001 CSE370 - VI - Sequential Logic 14

clock’

R’ and S’

changing stable changing stablestable

Clocks (cont’d)

Controlling an R-S latch with a clock
can't let R and S change while clock is active (allowing R and S to pass)
only have half of clock period for signal changes to propagate
signals must be stable for the other half of clock period

clock’

S’
Q’

Q
R’ R

S

Winter 2001 CSE370 - VI - Sequential Logic 15

clock

R

S Q

Q’ R

S Q

Q’R

S

Cascading latches

Connect output of one latch to input of another

How to stop changes from racing through chain?
need to be able to control flow of data from one latch to the next
move one latch per clock period
have to worry about logic between latches (arrows) that is too fast

Winter 2001 CSE370 - VI - Sequential Logic 16

Master-slave structure

Break flow by alternating clocks (like an air-lock)
use positive clock to latch inputs into one R-S latch
use negative clock to change outputs with another R-S latch

View pair as one basic unit
master-slave flip-flop
twice as much logic
output changes a few gate delays after the falling edge of clock but
does not affect any cascaded flip-flops

master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’R

S

Winter 2001 CSE370 - VI - Sequential Logic 17

Set
1s

catch

S
R

CLK
P
P’
Q
Q’

Reset

Master
Outputs

Slave
Outputs

The 1s catching problem

In first R-S stage of master-slave FF
0-1-0 glitch on R or S while clock is high is "caught" by master stage
leads to constraints on logic to be hazard-free

master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’R

S

Winter 2001 CSE370 - VI - Sequential Logic 18

10 gates

D flip-flop

Make S and R complements of each other
eliminates 1s catching problem
can't just hold previous value
(must have new value ready every clock period)
value of D just before clock goes low is what is stored in flip-flop
can make R-S flip-flop by adding logic to make D = S + R’ Q

D Q

Q’

master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’

Winter 2001 CSE370 - VI - Sequential Logic 19

Q

D

Clk=1

R

S

0

D’

0

D’ D

Q’

negative edge-triggered D
flip-flop (D-FF)

4-5 gate delays

must respect setup and hold time
constraints to successfully

capture input

characteristic equation
Q(t+1) = D

holds D’ when
clock goes low

holds D when
clock goes low

Edge-triggered flip-flops

More efficient solution: only 6 gates
sensitive to inputs only near edge of clock signal (not while high)

Winter 2001 CSE370 - VI - Sequential Logic 20

Q

D

Clk=0

R

S

D

D’

D’

D’ D

when clock goes high-to-low
data is latched

when clock is low
data is held

Edge-triggered flip-flops (cont’d)

Step-by-step analysis

Q

new D

Clk=0

R

S

D

D’

D’

D’ D

new D ≠ old D

Winter 2001 CSE370 - VI - Sequential Logic 21

positive edge-triggered FF

negative edge-triggered FF

D
CLK

Qpos
Qpos’
Qneg
Qneg’

100

Edge-triggered flip-flops (cont’d)

Positive edge-triggered
inputs sampled on rising edge; outputs change after rising edge

Negative edge-triggered flip-flops
inputs sampled on falling edge; outputs change after falling edge

Winter 2001 CSE370 - VI - Sequential Logic 22

Timing methodologies

Rules for interconnecting components and clocks
guarantee proper operation of system when strictly followed

Approach depends on building blocks used for memory elements
we'll focus on systems with edge-triggered flip-flops
⌧found in programmable logic devices

many custom integrated circuits focus on level-sensitive latches

Basic rules for correct timing:
(1) correct inputs, with respect to time, are provided to the flip-flops
(2) no flip-flop changes state more than once per clocking event

Winter 2001 CSE370 - VI - Sequential Logic 23

there is a timing "window"
around the clocking event
during which the input must
remain stable and unchanged
in order to be recognized

clock

data
changingstable

input

clock

Tsu Th

clock

data
D Q D Q

Timing methodologies (cont’d)

Definition of terms
clock: periodic event, causes state of memory element to change

can be rising edge or falling edge or high level or low level
setup time: minimum time before the clocking event by which the

input must be stable (Tsu)
hold time: minimum time after the clocking event until which the

input must remain stable (Th)

Winter 2001 CSE370 - VI - Sequential Logic 24

behavior is the same unless input changes
while the clock is high

D Q

CLK

positive
edge-triggered

flip-flop

D Q
G

CLK

transparent
(level-sensitive)

latch

D

CLK

Qedge

Qlatch

Comparison of latches and flip-flops

Winter 2001 CSE370 - VI - Sequential Logic 25

Type When inputs are sampled When output is valid

unclocked always propagation delay from input change
latch

level-sensitive clock high propagation delay from input change
latch (Tsu/Th around falling or clock edge (whichever is later)

edge of clock)

master-slave clock high propagation delay from falling edge
flip-flop (Tsu/Th around falling of clock

edge of clock)

negative clock hi-to-lo transition propagation delay from falling edge
edge-triggered (Tsu/Th around falling of clock
flip-flop edge of clock)

Comparison of latches and flip-flops (cont’d)

Winter 2001 CSE370 - VI - Sequential Logic 26

all measurements are made from the clocking event that is,
the rising edge of the clock

Typical timing specifications

Positive edge-triggered D flip-flop
setup and hold times
minimum clock width
propagation delays (low to high, high to low, max and typical)

Th
5ns

Tw 25ns

Tplh
25ns
13ns

Tphl
40ns
25ns

Tsu
20ns

D

CLK

Q

Tsu
20ns

Th
5ns

Winter 2001 CSE370 - VI - Sequential Logic 27

IN

Q0

Q1

CLK

100

Cascading edge-triggered flip-flops

Shift register
new value goes into first stage
while previous value of first stage goes into second stage
consider setup/hold/propagation delays (prop must be > hold)

CLK

IN
Q0 Q1

D Q D Q OUT

Winter 2001 CSE370 - VI - Sequential Logic 28

timing constraints
guarantee proper

operation of
cascaded components

assumes infinitely fast
distribution of the clock

Cascading edge-triggered flip-flops (cont’d)

Why this works
propagation delays exceed hold times
clock width constraint exceeds setup time
this guarantees following stage will latch current value before it changes
to new value

Tsu
4ns

Tp
3ns

Th
2ns

In

Q0

Q1

CLK

Tsu
4ns

Tp
3ns

Th
2ns

Winter 2001 CSE370 - VI - Sequential Logic 29

original state: IN = 0, Q0 = 1, Q1 = 1
due to skew, next state becomes: Q0 = 0, Q1 = 0, and not Q0 = 0, Q1 = 1

CLK1 is a delayed
version of CLK0

In
Q0
Q1

CLK0
CLK1

100

Clock skew

The problem
correct behavior assumes next state of all storage elements
determined by all storage elements at the same time
this is difficult in high-performance systems because time for clock
to arrive at flip-flop is comparable to delays through logic
effect of skew on cascaded flip-flops:

Winter 2001 CSE370 - VI - Sequential Logic 30

Summary of latches and flip-flops

Development of D-FF
level-sensitive used in custom integrated circuits
⌧can be made with 4 switches

edge-triggered used in programmable logic devices
good choice for data storage register

Historically J-K FF was popular but now never used
similar to R-S but with 1-1 being used to toggle output (complement state)
good in days of TTL/SSI (more complex input function: D = J Q’ + K’ Q
not a good choice for PALs/PLAs as it requires 2 inputs
can always be implemented using D-FF

Preset and clear inputs are highly desirable on flip-flops
used at start-up or to reset system to a known state

Winter 2001 CSE370 - VI - Sequential Logic 31

Metastability and asynchronous inputs

Clocked synchronous circuits
inputs, state, and outputs sampled or changed in relation to a
common reference signal (called the clock)
e.g., master/slave, edge-triggered

Asynchronous circuits
inputs, state, and outputs sampled or changed independently of a
common reference signal (glitches/hazards a major concern)
e.g., R-S latch

Asynchronous inputs to synchronous circuits
inputs can change at any time, will not meet setup/hold times
dangerous, synchronous inputs are greatly preferred
cannot be avoided (e.g., reset signal, memory wait, user input)

Winter 2001 CSE370 - VI - Sequential Logic 32

small, but non-zero probability
that the FF output will get stuck

in an in-between state

oscilloscope traces demonstrating
synchronizer failure and eventual

decay to steady state

logic 0 logic 1
logic 0

logic 1

Synchronization failure

Occurs when FF input changes close to clock edge
the FF may enter a metastable state – neither a logic 0 nor 1 –
it may stay in this state an indefinite amount of time
this is not likely in practice but has some probability

Winter 2001 CSE370 - VI - Sequential Logic 33

D DQ Q
asynchronous

input
synchronized

input

synchronous system

Clk

Dealing with synchronization failure

Probability of failure can never be reduced to 0, but it can be reduced
(1) slow down the system clock
this gives the synchronizer more time to decay into a steady state;
synchronizer failure becomes a big problem for very high speed systems
(2) use fastest possible logic technology in the synchronizer
this makes for a very sharp "peak" upon which to balance
(3) cascade two synchronizers
this effectively synchronizes twice (both would have to fail)

Winter 2001 CSE370 - VI - Sequential Logic 34

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input D Q

Clocked
Synchronous

System

Synchronizer

Handling asynchronous inputs

Never allow asynchronous inputs to fan-out to more than one flip-flop
synchronize as soon as possible and then treat as synchronous signal

Winter 2001 CSE370 - VI - Sequential Logic 35

In is asynchronous and
fans out to D0 and D1

one FF catches the
signal, one does not

inconsistent state may
be reached!

In

Q0

Q1

CLK

Handling asynchronous inputs (cont’d)

What can go wrong?
input changes too close to clock edge (violating setup time constraint)

Winter 2001 CSE370 - VI - Sequential Logic 36

Flip-flop features

Reset (set state to 0) – R
synchronous: Dnew = R' • Dold (when next clock edge arrives)
asynchronous: doesn't wait for clock, quick but dangerous

Preset or set (set state to 1) – S (or sometimes P)
synchronous: Dnew = Dold + S (when next clock edge arrives)
asynchronous: doesn't wait for clock, quick but dangerous

Both reset and preset
Dnew = R' • Dold + S (set-dominant)
Dnew = R' • Dold + R'S (reset-dominant)

Selective input capability (input enable or load) – LD or EN
multiplexor at input: Dnew = LD' • Q + LD • Dold
load may or may not override reset/set (usually R/S have priority)

Complementary outputs – Q and Q'

Winter 2001 CSE370 - VI - Sequential Logic 37

R S R S R S
D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

IN1 IN2 IN3 IN4

R S

"0"

Registers

Collections of flip-flops with similar controls and logic
stored values somehow related (for example, form binary value)
share clock, reset, and set lines
similar logic at each stage

Examples
shift registers
counters

Winter 2001 CSE370 - VI - Sequential Logic 38

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

Shift register

Holds samples of input
store last 4 input values in sequence
4-bit shift register:

Winter 2001 CSE370 - VI - Sequential Logic 39

clear sets the register contents
and output to 0

s1 and s0 determine the shift function

s0 s1 function
0 0 hold state
0 1 shift right
1 0 shift left
1 1 load new input

left_in
left_out

right_out

clear
right_in

output

input

s0
s1

clock

Universal shift register

Holds 4 values
serial or parallel inputs
serial or parallel outputs
permits shift left or right
shift in new values from left or right

Winter 2001 CSE370 - VI - Sequential Logic 40

Nth cell

D
Q

CLK

Q[N-1]
(left)

Q[N+1]
(right)Input[N]

to N-1th
cell

to N+1th
cell

clear s0 s1 new value
1 – – 0
0 0 0 output
0 0 1 output value of FF to left (shift right)
0 1 0 output value of FF to right (shift left)
0 1 1 input

Design of universal shift register

Consider one of the four flip-flops
new value at next clock cycle:

s0 and s1
control mux0 1 2 3

CLEAR

Winter 2001 CSE370 - VI - Sequential Logic 41

parallel inputs

parallel outputs

serial transmission

Shift register application

Parallel-to-serial conversion for serial transmission

Winter 2001 CSE370 - VI - Sequential Logic 42

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

OUT

Pattern recognizer

Combinational function of input samples
in this case, recognizing the pattern 1001 on the single input signal

Winter 2001 CSE370 - VI - Sequential Logic 43

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

Counters

Sequences through a fixed set of patterns
in this case, 1000, 0100, 0010, 0001
if one of the patterns is its initial state (by loading or set/reset)

Winter 2001 CSE370 - VI - Sequential Logic 44

Activity

How does this counter work?

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

Counts through the sequence: 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000

Known as Mobius (or Johnson) counter

Winter 2001 CSE370 - VI - Sequential Logic 45

D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

"1"

Binary counter

Logic between registers (not just multiplexer)
XOR decides when bit should be toggled
always for low-order bit,
only when first bit is true for second bit,
and so on

Winter 2001 CSE370 - VI - Sequential Logic 46

EN

D
C
B
A

LOAD

CLK

CLR

RCO

QD
QC
QB
QA

(1) Low order 4-bits = 1111

(2) RCO goes high

(3) High order 4-bits
are incremented

Four-bit binary synchronous up-counter

Standard component with many applications
positive edge-triggered FFs w/ synchronous load and clear inputs
parallel load data from D, C, B, A
enable inputs: must be asserted to enable counting
RCO: ripple-carry out used for cascading counters
⌧high when counter is in its highest state 1111
⌧implemented using an AND gate

Winter 2001 CSE370 - VI - Sequential Logic 47

EN

D
C
B
A
LOAD
CLK
CLR

RCO
QD
QC
QB
QA

"1"

"0"
"0"
"0"
"0"

"0"

EN

D
C
B
A
LOAD
CLK
CLR

RCO
QD
QC
QB
QA

"1"

"0"
"1"
"1"
"0"

Offset counters

Starting offset counters – use of synchronous load
e.g., 0110, 0111, 1000, 1001,
1010, 1011, 1100, 1101, 1111, 0110, . . .

Ending offset counter – comparator for ending value
e.g., 0000, 0001, 0010, ..., 1100, 1101, 0000

Combinations of the above (start and stop value)

Winter 2001 CSE370 - VI - Sequential Logic 48

Hardware Description Languages and
Sequential Logic

Flip-flops
representation of clocks - timing of state changes
asynchronous vs. synchronous

Shift registers

Simple counters

Winter 2001 CSE370 - VI - Sequential Logic 49

module dff (clk, d, q);

input clk, d;
output q;
reg q;

always @(posedge clk)
q = d;

endmodule

Flip-flop in Verilog

Use always block's sensitivity list to wait for clock edge

Winter 2001 CSE370 - VI - Sequential Logic 50

module dff (clk, s, r, d, q);
input clk, s, r, d;
output q;
reg q;

always @(posedge clk)
if (r) q = 1'b0;
else if (s) q = 1'b1;
else q = d;

endmodule

module dff (clk, s, r, d, q);
input clk, s, r, d;
output q;
reg q;

always @(posedge r)
q = 1'b0;

always @(posedge s)
q = 1'b1;

always @(posedge clk)
q = d;

endmodule

More Flip-flops

Synchronous/asynchronous reset/set
single thread that waits for the clock
three parallel threads – only one of which waits for the clock

Synchronous Asynchronous

Winter 2001 CSE370 - VI - Sequential Logic 51

module dff (clk, d, q);

input clk, d;
output q;
reg q;

always @(clk)
q = d;

endmodule

Incorrect Flip-flop in Verilog

Use always block's sensitivity list to wait for clock to change

Not correct! Q will
change whenever the
clock changes, not
just on the edge.

Winter 2001 CSE370 - VI - Sequential Logic 52

always @(posedge CLK)
begin

temp = B;
B = A;
A = temp;

end

always @(posedge CLK)
begin

A <= B;
B <= A;

end

Blocking and Non-Blocking Assignments

Blocking assignments (X=A)
completes the assignment before continuing on to next statement

Non-blocking assignments (X<=A)
completes in zero time and doesn’t change the value of the target until
a blocking point (delay/wait) is encountered

Example: swap

Winter 2001 CSE370 - VI - Sequential Logic 53

Register-transfer-level (RTL) Assignment

Non-blocking assignment is also known as an RTL assignment
if used in an always block triggered by a clock edge
all flip-flops change together

// B,C,D all get the value of A
always @(posedge clk)

begin
B = A;
C = B;
D = C;

end

// implements a shift register too
always @(posedge clk)

begin
B <= A;
C <= B;
D <= C;

end

Winter 2001 CSE370 - VI - Sequential Logic 54

Mobius Counter in Verilog

initial
begin

A = 1’b0;
B = 1’b0;
C = 1’b0;
D = 1’b0;

end

always @(posedge clk)
begin

A <= ~D;
B <= A;
C <= B;
D <= C;

end

Winter 2001 CSE370 - VI - Sequential Logic 55

Binary Counter in Verilog

module binary_counter (clk, c8, c4, c2, c1);

input clk;

output c8, c4, c2, c1;

reg [3:0] count;

initial begin

count = 0;

end

always @(posedge clk) begin

count = count + 1’b0001;

end

assign c8 = count[3];

assign c4 = count[2];

assign c2 = count[1];

assign c1 = count[0];

endmodule

module binary_counter (clk, c8, c4, c2, c1, rco);

input clk;

output c8, c4, c2, c1, rco;

reg [3:0] count;

reg rco;

initial begin . . . end

always @(posedge clk) begin . . . end

assign c8 = count[3];

assign c4 = count[2];

assign c2 = count[1];

assign c1 = count[0];

assign rco = (count == 15);

endmodule

Winter 2001 CSE370 - VI - Sequential Logic 56

Sequential logic summary

Fundamental building block of circuits with state
latch and flip-flop
R-S latch, R-S master/slave, D master/slave, edge-triggered D flip-flop

Timing methodologies
use of clocks
cascaded FFs work because propagation delays exceed hold times
beware of clock skew

Asynchronous inputs and their dangers
synchronizer failure: what it is and how to minimize its impact

Basic registers
shift registers
counters

Hardware description languages and sequential logic

