
Autumn 2000 CSE370 - X - Sequential Logic Optimization 1

Finite state machine optimization

❚ State minimization

❙ fewer states require fewer state bits

❙ fewer bits require fewer logic equations

❚ Encodings: state, inputs, outputs

❙ state encoding with fewer bits has fewer equations to implement

❘ however, each may be more complex

❙ state encoding with more bits (e.g., one-hot) has simpler equations

❘ complexity directly related to complexity of state diagram

❙ input/output encoding may or may not be under designer control

Autumn 2000 CSE370 - X - Sequential Logic Optimization 2

Algorithmic approach to state minimization

❚ Goal – identify and combine states that have equivalent behavior

❚ Equivalent states:

❙ same output

❙ for all input combinations, states transition to same or equivalent states

❚ Algorithm sketch

❙ 1. place all states in one set

❙ 2. initially partition set based on output behavior

❙ 3. successively partition resulting subsets based on next state transitions

❙ 4. repeat (3) until no further partitioning is required

❘ states left in the same set are equivalent

❙ polynomial time procedure

Autumn 2000 CSE370 - X - Sequential Logic Optimization 3

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

State minimization example

❚ Sequence detector for 010 or 110

S0

S3

S2S1

S5 S6S4

1/00/0

1/0

1/0
0/1

0/01/00/0

1/0
0/0

1/0
0/1

1/0
0/0

Autumn 2000 CSE370 - X - Sequential Logic Optimization 4

(S0 S1 S2 S3 S4 S5 S6)

(S0 S1 S2 S3 S5) (S4 S6)

(S0 S3 S5) (S1 S2) (S4 S6)

(S0) (S3 S5) (S1 S2) (S4 S6)

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

S1 is equivalent to S2

S3 is equivalent to S5

S4 is equivalent to S6

Method of successive partitions

Autumn 2000 CSE370 - X - Sequential Logic Optimization 5

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1' S1' 0 0
0 + 1 S1' S3' S4' 0 0
X0 S3' S0 S0 0 0
X1 S4' S0 S0 1 0

Minimized FSM

❚ State minimized sequence detector for 010 or 110

S0

S1’

S3’ S4’

X/0

1/0

1/00/1

0/0

X/0

Autumn 2000 CSE370 - X - Sequential Logic Optimization 6

symbolic state
transition table

present next state output
state 00 01 10 11
S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S4 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

inputs here

More complex state minimization

❚ Multiple input example

10

01

11

00

00

01

1110

10

01

1100

10

00

11

00

11
10

01

10

11
01

00

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

01

Autumn 2000 CSE370 - X - Sequential Logic Optimization 7

S0-S1

S1-S3
S2-S2

S3-S4

S0-S0

S1-S1
S2-S2

S3-S5

S0-S1

S3-S0
S1-S4

S4-S5

S0-S1

S3-S4

S1-S0
S4-S5

S1-S0

S3-S1
S2-S2

S4-S5

S4-S0
S5-S5

S1-S1

S0-S4

minimized state table
(S0==S4) (S3==S5)

present next state output
state 00 01 10 11
S0' S0' S1 S2 S3' 1
S1 S0' S3' S1 S3' 0
S2 S1 S3' S2 S0' 1
S3' S1 S0' S0' S3' 0

Minimized FSM

❚ Implication chart method

❙ cross out incompatible states based on outputs

❙ then cross out more cells if indexed chart entries are already crossed out

S1

S2

S3

S4

S5

S0 S1 S2 S3 S4

Autumn 2000 CSE370 - X - Sequential Logic Optimization 8

Minimizing incompletely specified FSMs

❚ Equivalence of states is transitive when machine is fully specified

❚ But its not transitive when don't cares are present

e.g., state output
S0 – 0 S1 is compatible with both S0 and S2
S1 1 – but S0 and S2 are incompatible
S2 – 1

❚ No polynomial time algorithm exists for determining best grouping of states
into equivalent sets that will yield the smallest number of final states

Autumn 2000 CSE370 - X - Sequential Logic Optimization 9

X Q1 Q0 Q1
+ Q0

+

0 0 0 0 0

0 0 1 0 0

0 1 1 0 0

1 0 0 0 1

1 0 1 1 1

1 1 1 1 1

– 1 0 0 0

Q1
+ = X (Q1 xor Q0)

Q0
+ = X Q1’ Q0’

Minimizing states may not yield best circuit

❚ Example: edge detector - outputs 1 when last two input changes from 0 to 1

00
[0]

11
[0]

01
[1]X’

X’

X’

X

X

X

Autumn 2000 CSE370 - X - Sequential Logic Optimization 10

Another implementation of edge detector

❚ "Ad hoc" solution - not minimal but cheap and fast

00
[0]

10
[0]

01
[1]

X’ X

X’

X

X

X11
[0]

X’

X’

Autumn 2000 CSE370 - X - Sequential Logic Optimization 11

State assignment

❚ Choose bit vectors to assign to each “symbolic” state

❙ with n state bits for m states there are 2n! / (2n – m)!
[log n <= m <= 2n]

❙ 2n codes possible for 1st state, 2n–1 for 2nd, 2n–2 for 3rd, …

❙ huge number even for small values of n and m

❘ intractable for state machines of any size

❘ heuristics are necessary for practical solutions

❙ optimize some metric for the combinational logic

❘ size (amount of logic and number of FFs)

❘ speed (depth of logic and fanout)

❘ dependencies (decomposition)

Autumn 2000 CSE370 - X - Sequential Logic Optimization 12

State assignment strategies

❚ Possible strategies

❙ sequential – just number states as they appear in the state table

❙ random – pick random codes

❙ one-hot – use as many state bits as there are states (bit=1 –> state)

❙ output – use outputs to help encode states

❙ heuristic – rules of thumb that seem to work in most cases

❚ No guarantee of optimality – another intractable problem

Autumn 2000 CSE370 - X - Sequential Logic Optimization 13

One-hot state assignment

❚ Simple

❙ easy to encode

❙ easy to debug

❚ Small logic functions

❙ each state function requires only predecessor state bits as input

❚ Good for programmable devices

❙ lots of flip-flops readily available

❙ simple functions with small support (signals its dependent upon)

❚ Impractical for large machines

❙ too many states require too many flip-flops

❙ decompose FSMs into smaller pieces that can be one-hot encoded

❚ Many slight variations to one-hot

❙ one-hot + all-0

Autumn 2000 CSE370 - X - Sequential Logic Optimization 14

I Q Q+ O

i a c j

i b c k

I Q Q+ O

i a b j

k a c l

I Q Q+ O

i a b j

i c d j

c = i * a + i * b

b = i * a

c = k * a

j = i * a + i * c

b = i * a

d = i * c

i / j i / k

a b

c

a

b c

i / j k / l

b d

i / j

a c
i / j

Heuristics for state assignment

❚ Adjacent codes to states that share a common next state

❙ group 1's in next state map

❚ Adjacent codes to states that share a common ancestor state

❙ group 1's in next state map

❚ Adjacent codes to states that have a common output behavior

❙ group 1's in output map

Autumn 2000 CSE370 - X - Sequential Logic Optimization 15

General approach to heuristic state assignment

❚ All current methods are variants of this

❙ 1) determine which states “attract” each other (weighted pairs)

❙ 2) generate constraints on codes (which should be in same cube)

❙ 3) place codes on Boolean cube so as to maximize constraints satisfied
(weighted sum)

❚ Different weights make sense depending on whether we are optimizing for
two-level or multi-level forms

❚ Can't consider all possible embeddings of state clusters in Boolean cube

❙ heuristics for ordering embedding

❙ to prune search for best embedding

❙ expand cube (more state bits) to satisfy more constraints

Autumn 2000 CSE370 - X - Sequential Logic Optimization 16

Output-based encoding

❚ Reuse outputs as state bits - use outputs to help distinguish states

❙ why create new functions for state bits when output can serve as well

❙ fits in nicely with synchronous Mealy implementations

HG = ST’ H1’ H0’ F1 F0’ + ST H1 H0’ F1’ F0

HY = ST H1’ H0’ F1 F0’ + ST’ H1’ H0 F1 F0’

FG = ST H1’ H0 F1 F0’ + ST’ H1 H0’ F1’ F0’

HY = ST H1 H0’ F1’ F0’ + ST’ H1 H0’ F1’ F0

Output patterns are unique to states, we do not

need ANY state bits – implement 5 functions

(one for each output) instead of 7 (outputs plus

2 state bits)

Inputs Present State Next State Outputs

C TL TS ST H F

0 – – HG HG 0 00 10

– 0 – HG HG 0 00 10

1 1 – HG HY 1 00 10

– – 0 HY HY 0 01 10

– – 1 HY FG 1 01 10

1 0 – FG FG 0 10 00

0 – – FG FY 1 10 00

– 1 – FG FY 1 10 00

– – 0 FY FY 0 10 01

– – 1 FY HG 1 10 01

Autumn 2000 CSE370 - X - Sequential Logic Optimization 17

Current state assignment approaches

❚ For tight encodings using close to the minimum number of state bits

❙ best of 10 random seems to be adequate (averages as well as heuristics)

❙ heuristic approaches are not even close to optimality

❙ used in custom chip design

❚ One-hot encoding

❙ easy for small state machines

❙ generates small equations with easy to estimate complexity

❙ common in FPGAs and other programmable logic

❚ Output-based encoding

❙ ad hoc - no tools

❙ most common approach taken by human designers

❙ yields very small circuits for most FSMs

Autumn 2000 CSE370 - X - Sequential Logic Optimization 18

Sequential logic optimization summary

❚ State minimization

❙ straightforward in fully-specified machines

❙ computationally intractable, in general (with don’t cares)

❚ State assignment

❙ many heuristics

❙ best-of-10-random just as good or better for most machines

❙ output encoding can be attractive (especially for PAL implementations)

