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Combinational logic design case studies

� General design procedure

� Case studies

� BCD to 7-segment display controller

� logical function unit

� process line controller

� calendar subsystem

� Arithmetic circuits

� integer representations

� addition/subtraction

� arithmetic/logic units
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General design procedure for combinational logic

� 1.  Understand the problem

�what is the circuit supposed to do?

�write down inputs (data, control) and outputs

� draw block diagram or other picture

� 2.  Formulate the problem using a suitable design representation

� truth table or waveform diagram are typical

�may require encoding of symbolic inputs and outputs

� 3.  Choose implementation target

�ROM, PAL, PLA

�mux, decoder and OR-gate

� discrete gates

� 4.  Follow implementation procedure

� K-maps for two-level, multi-level

� design tools and hardware description language (e.g., Verilog)



Autumn 2000 CSE370 - V - Combinational Logic Case Studies 3

BCD to 7–segment
control signal

decoder

c0  c1  c2  c3  c4  c5  c6

A   B   C   D

BCD to 7-segment display controller

� Understanding the problem

� input is a 4 bit bcd digit (A, B, C, D)

� output is the control signals for the display (7 outputs C0 – C6)

� Block diagram

c1c5

c2c4
c6

c0

c3
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A B C D C0 C1 C2 C3 C4 C5 C6

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 0 0 1 1

1 0 1 – – – – – – – –

1 1 – – – – – – – – –

Formalize the problem

� Truth table

� show don't cares

� Choose implementation target

� if ROM, we are done

� don't cares imply PAL/PLA
may be attractive

� Follow implementation procedure

�minimization using K-maps
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C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'
C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

Implementation as minimized sum-of-products

� 15 unique product terms when minimized individually

1    0    X    1

0    1    X    1 

1    1    X    X

1    1    X    X 

D

A

B

C

1    1    X    1

1    0    X    1 

1    1    X    X

1    0    X    X 

D

A

B

C

0    1    X    1

0    1    X    1 

1    0    X    X

1    1    X    X 

D

A

B

C

1    1    X    1

1    1    X    1 

1    1    X    X

0    1    X    X 

D

A

B

C

1    0    X    1

0    1    X    0 

1    0    X    X

1    1    X    X 

D

A

B

C

1    0    X    1

0    0    X    0 

0    0    X    X

1    1    X    X 

D

A

B

C

1    1    X    1

0    1    X    1 

0    0    X    X

0    1    X    X 

D

A

B

C
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C0 = B C' D + C D + B' D' + B C D' + A
C1 = B' D + C' D' + C D + B' D'
C2 = B' D + B C' D + C' D' + C D + B C D'
C3 = B C' D + B' D + B' D' + B C D'
C4 = B' D' + B C D'
C5 = B C' D + C' D' + A + B C D'
C6 = B' C + B C' + B C D' + A

C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'
C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

C2

Implementation as minimized S-o-P (cont'd)

� Can do better

� 9 unique product terms (instead of 15)

� share terms among outputs

� each output not necessarily in minimized form

1    1    X    1

1    1    X    1 

1    1    X    X

0    1    X    X 

D

A

B

C

1    1    X    1

1    1    X    1 

1    1    X    X

0    1    X    X 

D

A

B

C

C2
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BC'

B'C

B'D

BC'D

C'D'

CD

B'D'

A

BCD'

A B C D

C0  C1  C2  C3  C4  C5  C6  C7

PLA implementation
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C0 = C3 + A' B X' + A D Y
C1 = Y + A' C5' + C' D' C6
C2 = C5 + A' B' D + A' C D
C3 = C4 + B D C5 + A' B' X'
C4 = D' Y + A' C D'
C5 = C' C4 + A Y + A' B X
C6 = A C4 + C C5 + C4' C5 + A' B' C

X = C' + D'
Y = B' C'

C2 = B + C' + D

C2 = B' D + B C' D + C' D' + C D + B C D'

C2 = B' D + B C' D + C' D' + W
W = C D + B C D'

PAL implementation/Discrete gate implementation

� Limit of 4 product terms per output

� decomposition of functions with larger number of terms

� do not share terms in PAL anyway
(although there are some with some shared terms)

� decompose into multi-level logic (hopefully with CAD support)

� find common sub-expressions among functions

need another input and another output
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C0 C1 C2 Function Comments

0 0 0 1 always 1

0 0 1 A + B logical OR

0 1 0 (A • B)' logical NAND

0 1 1 A xor B logical xor

1 0 0 A xnor B logical xnor

1 0 1 A • B logical AND

1 1 0 (A + B)' logical NOR

1 1 1 0 always 0

3 control inputs: C0, C1, C2

2 data inputs: A, B

1 output: F

Logical function unit

� Multi-purpose function block

� 3 control inputs to specify operation to perform on operands

� 2 data inputs for operands

� 1 output of the same bit-width as operands
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choose implementation technology

5-variable K-map to discrete gates

multiplexor implementation

1

0

A
B

A
B

A
B

Formalize the problem

C0 C1 C2 A B F

0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 1

0 0 1 0 0 0

0 0 1 0 1 1

0 0 1 1 0 1

0 0 1 1 1 1

0 1 0 0 0 1

0 1 0 0 1 1

0 1 0 1 0 1

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 0 1 1

0 1 1 1 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 0 0 1 0

1 0 0 1 0 0

1 0 0 1 1 1

1 0 1 0 0 0

1 0 1 0 1 0

1 0 1 1 0 0

1 0 1 1 1 1

1 1 0 0 0 1

1 1 0 0 1 0

1 1 0 1 0 0

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 1 1 0

C2C0 C1

0

1

2

3

4

5

6

7
S2

8:1 MUX

S1 S0

F
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Production line control

� Rods of varying length (+/-10%) travel on conveyor belt

�mechanical arm pushes rods within spec (+/-5%) to one side

� second arm pushes rods too long to other side

� rods that are too short stay on belt

� 3 light barriers (light source + photocell) as sensors

� design combinational logic to activate the arms

� Understanding the problem

� inputs are three sensors

� outputs are two arm control signals

� assume sensor reads "1" when tripped, "0" otherwise

� call sensors A, B, C
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Sketch of problem

� Position of sensors

� A to B distance = specification – 5%

� A to C distance = specification + 5%

Within
Spec

Too
Short

Too
Long

A

B

C

spec
- 5% 

spec
+ 5%
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logic implementation now straightforward

just use three 3-input AND gates

"too short" = AB'C'

(only first sensor tripped)

"in spec" = A B C'

(first two sensors tripped)

"too long" = A B C

(all three sensors tripped)

A B C Function

0 0 0 do nothing

0 0 1 do nothing

0 1 0 do nothing

0 1 1 do nothing

1 0 0 too short

1 0 1 don't care

1 1 0 in spec

1 1 1 too long

Formalize the problem

� Truth table

� show don't cares
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integer number_of_days ( month, leap_year_flag) {
switch (month) {

case 1: return (31);
case 2: if (leap_year_flag == 1)

then return (29)
else return (28);

case 3: return (31);
case 4: return (30);
case 5: return (31);
case 6: return (30);
case 7: return (31);
case 8: return (31);
case 9: return (30);
case 10: return (31);
case 11: return (30);
case 12: return (31);
default: return (0);

}
}

Calendar subsystem

� Determine number of days in a month (to control watch display)

� used in controlling the display of a wrist-watch LCD screen

� inputs: month, leap year flag

� outputs: number of days

� Use software implementation
to help understand the problem



Autumn 2000 CSE370 - V - Combinational Logic Case Studies 15

leapmonth

28 29 30 31

month leap 28 29 30 31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Formalize the problem

� Encoding:

� binary number for month: 4 bits

� 4 wires for 28, 29, 30, and 31
one-hot – only one true at any time

� Block diagram:
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month leap 28 29 30 31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Choose implementation target

and perform mapping

� Discrete gates

� 28 = 

� 29 =

� 30 = 

� 31 = 

� Can translate to S-o-P or P-o-S

m8’ m4’ m2 m1’ leap’

m8’ m4’ m2 m1’ leap

m8’ m4 m1’ + m8 m1

m8’ m1 + m8 m1’
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Leap year flag

� Determine value of leap year flag given the year

� For years after 1582 (Gregorian calendar reformation), 

� leap years are all the years divisible by 4, 

� except that years divisible by 100 are not leap years, 

� but years divisible by 400 are leap years. 

� Encoding the year:

� binary – easy for divisible by 4, 
but difficult for 100 and 400 (not powers of 2)

� BCD – easy for 100,
but more difficult for 4, what about 400?

� Parts:

� construct a circuit that determines if the year is divisible by 4

� construct a circuit that determines if the year is divisible by 100

� construct a circuit that determines if the year is divisible by 400

� combine the results of the previous three steps to yield the leap year flag
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Activity: divisible-by-4 circuit

� BCD coded year 
� YM8 YM4 YM2 YM1 – YH8 YH4 YH2 YH1 – YT8 YT4 YT2 YT1 – YO8 YO4 YO2 YO1

� Only need to look at low-order two digits of the year
all years ending in 00, 04, 08, 12, 16, 20, etc. are divisible by 4
� if tens digit is even, then divisible by 4 if ones digit is 0, 4, or 8
� if tens digit is odd, then divisible by 4 if the ones digit is 2 or 6.  

� Translates into the following Boolean expression
(where YT1 is the year's tens digit low-order bit, 
YO8 is the high-order bit of year's ones digit, etc.):

YT1’ (YO8’ YO4’ YO2’ YO1’ + YO8’ YO4 YO2’ YO1’ + YO8 YO4’ YO2’ YO1’ ) 

+ YT1 (YO8’ YO4’ YO2 YO1’ + YO8’ YO4 YO2 YO1’ )

� Digits with values of 10 to 15 will never occur, simplify further to yield: 

YT1’ YO2’ YO1’ + YT1 YO2 YO1’
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Divisible-by-100 and divisible-by-400 circuits

� Divisible-by-100 just requires checking that all bits of two low-order digits 
are all 0:

YT8’ YT4’ YT2’ YT1’ 

• YO8’ YO4’ YO2’ YO1’ 

� Divisible-by-400 combines the divisible-by-4 (applied to the thousands and 
hundreds digits) and divisible-by-100 circuits

(YM1’ YH2’ YH1’ + YM1 YH2 YH1’) 

• (YT8’ YT4’ YT2’ YT1’ • YO8’ YO4’ YO2’ YO1’ )
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Combining to determine leap year flag

� Label results of previous three circuits: D4, D100, and D400

leap_year_flag = D4 (D100 • D400’ ) ’

= D4 • D100’ + D4 • D400

= D4 • D100’ + D400
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Implementation of leap year flag
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Arithmetic circuits

� Excellent examples of combinational logic design

� Time vs. space trade-offs

� doing things fast may require more logic and thus more space

� example: carry lookahead logic

� Arithmetic and logic units

� general-purpose building blocks

� critical components of processor datapaths

� used within most computer instructions
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Number systems

� Representation of positive numbers is the same in most systems 

� Major differences are in how negative numbers are represented 

� Representation of negative numbers come in three major schemes

� sign and magnitude

� 1s complement

� 2s complement

� Assumptions

�we'll assume a 4 bit machine word 

� 16 different values can be represented 

� roughly half are positive, half are negative
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0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000
0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7–0

–1

–2

–3

–4

–5

–6

–7

0 100 = + 4

1 100 = – 4

Sign and magnitude

� One bit dedicate to sign (positive or negative)

� sign: 0 = positive (or zero), 1 = negative

� Rest represent the absolute value or magnitude

� three low order bits: 0 (000) thru 7 (111)

� Range for n bits

�+/– 2n–1 –1  (two representations for 0)

� Cumbersome addition/subtraction 

�must compare magnitudes
to determine sign of result
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2 =  10000

1 =  00001

2   –1 =    1111

7 =    0111

1000   =  –7 in 1s complement form

4

4

1s complement

� If N is a positive number, then the negative of N ( its 1s complement or N' ) 
is N' = (2n– 1) – N

� example: 1s complement of 7

� shortcut: simply compute bit-wise complement ( 0111 -> 1000 )
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0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000
0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7–7

–6

–5

–4

–3

–2

–1

–0

0 100 = + 4

1 011 = – 4

1s complement (cont'd)

� Subtraction implemented by 1s complement and then addition

� Two representations of 0

� causes some complexities in addition

� High-order bit can act as sign bit
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0 100 = + 4

1 100 = – 4

+0

+1

+2

+3

+4

+5

+6

+7–8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000
0110

0101

0100

0010

0001

2s complement

� 1s complement with negative numbers shifted one position clockwise

� only one representation for 0 

� one more negative number than positive number

� high-order bit can act as sign bit
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2 = 10000

7 = 0111

1001  = repr. of –7

4

2 = 10000

–7 = 1001

0111  = repr. of 7

4

subtract

subtract

2s complement (cont’d)

� If N is a positive number, then the negative of N ( its 2s complement or N* ) 
is N* = 2n – N
� example: 2s complement of 7

� example: 2s complement of –7

� shortcut: 2s complement = bit-wise complement + 1
⌧0111 -> 1000 + 1 -> 1001  (representation of -7)
⌧1001 -> 0110 + 1 -> 0111  (representation of 7)
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4

+ 3

7

0100

0011

0111

– 4

+ (– 3)

– 7

1100

1101

11001

4

– 3

1

0100

1101

10001

– 4

+ 3

– 1

1100

0011

1111

2s complement addition and subtraction

� Simple addition and subtraction

� simple scheme makes 2s complement the virtually unanimous choice for 
integer number systems in computers
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Why can the carry-out be ignored?

� Can't ignore it completely

� needed to check for overflow (see next two slides)

� When there is no overflow, carry-out may be true but can be ignored

– M + N when N > M:

M*  +  N  =  (2n – M)  +  N  =  2n +  (N – M)

ignoring carry-out is just like subtracting 2n

– M + – N where N + M ≤ 2n–1

(– M) + (– N) = M* +  N* = (2n– M) + (2n– N)   = 2n – (M + N)  +  2n

ignoring the carry, it is just the 2s complement representation for – (M + N)
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5 + 3 = –8 –7 – 2 = +7

+0

+1

+2

+3

+4

+5

+6

+7–8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000
0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7–8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000
0110

0101

0100

0010

0001

Overflow in 2s complement addition/subtraction

� Overflow conditions

� add two positive numbers to get a negative number

� add two negative numbers to get a positive number
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5

3

– 8

0 1 1 1

0 1 0 1

0 0 1 1

1 0 0 0

– 7

– 2

7

1 0 0 0

1 0 0 1

1 1 1 0

1 0 1 1 1

5

2

7

0 0 0 0

0 1 0 1

0 0 1 0

0 1 1 1

– 3

– 5

– 8

1 1 1 1

1 1 0 1

1 0 1 1

1 1 0 0 0

overflow overflow

no overflow no overflow

Overflow conditions

� Overflow when carry into sign bit position is not equal to carry-out
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Ai Bi Sum Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 1 1

Ai Bi Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Circuits for binary addition

� Half adder (add 2 1-bit numbers)

� Sum = Ai' Bi + Ai Bi' = Ai xor Bi

� Cout = Ai Bi

� Full adder (carry-in to cascade for multi-bit adders)

� Sum = Ci xor A xor B

� Cout = B Ci  +  A Ci  +  A B = Ci (A + B) + A B
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Cout = A B + Cin (A xor B) = A B + B Cin + A Cin

A

B

Cin
S

A

A

B

B

Cin
Cout

A

B

A xor B

Cin

A xor B xor Cin

Half
Adder

Sum

Cout Cin (A xor B)A B

Sum

Cout

Half
Adder

Sum

Cout

Full adder implementations

� Standard approach

� 6 gates

� 2 XORs, 2 ANDs, 2 ORs

� Alternative implementation

� 5 gates

� half adder is an XOR gate and AND gate

� 2 XORs, 2 ANDs, 1 OR
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A B

Cout

Sum

Cin

0 1

Add'
Subtract

A0 B0B0'

Sel

Overflow

A B

Cout

Sum

Cin

A1 B1B1'

Sel

A B

Cout

Sum

Cin

A2 B2B2'

Sel 0 1 0 10 1

A B

Cout

Sum

Cin

A3 B3B3'

Sel

S3 S2 S1 S0

Adder/subtractor

� Use an adder to do subtraction thanks to 2s complement representation

� A – B  =   A + (– B)   =   A + B' + 1

� control signal selects B or 2s complement of B
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A

A

B

B

Cin Cout

@0

@0

@0
@0

@N

@1

@1

@N+1

@N+2

late
arriving
signal

two gate delays
to compute Cout

4 stage
adder

A0
B0

0

S0 @2

A1
B1

C1 @2

S1 @3

A2
B2

C2 @4

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

Ripple-carry adders

� Critical delay

� the propagation of carry from low to high order stages
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T0 T2 T4 T6 T8

S0, C1 Valid S1, C2 Valid S2, C3 Valid S3, C4 Valid

Ripple-carry adders (cont’d)

� Critical delay

� the propagation of carry from low to high order stages

� 1111 + 0001 is the worst case addition

� carry must propagate through all bits
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Carry-lookahead logic

� Carry generate: Gi = Ai Bi

�must generate carry when A = B = 1

� Carry propagate:  Pi = Ai xor Bi

� carry-in will equal carry-out here

� Sum and Cout can be re-expressed in terms of generate/propagate:

�Si = Ai xor Bi xor Ci
= Pi xor Ci

�Ci+1 = Ai Bi + Ai Ci + Bi Ci
= Ai Bi + Ci (Ai + Bi)
= Ai Bi + Ci (Ai xor Bi)
= Gi + Ci Pi
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Carry-lookahead logic (cont’d)

� Re-express the carry logic as follows:

� C1 = G0 + P0 C0

� C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0

� C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0

� C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0
+ P3 P2 P1 P0 C0

� Each of the carry equations can be implemented with two-level logic

� all inputs are now directly derived from data inputs and not from 
intermediate carries

� this allows computation of all sum outputs to proceed in parallel
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G3

C0C0

C0

C0
P0P0

P0

P0

G0
G0

G0

G0
C1 @ 3

P1

P1

P1

P1

P1

P1 G1

G1

G1

C2  @ 3
P2

P2

P2

P2

P2

P2

G2

G2

C3 @ 3

P3

P3

P3

P3

C4 @ 3

Pi @ 1 gate delay

Ci
Si @ 2 gate delays

Bi
Ai

Gi @ 1 gate delay
increasingly complex

logic for carries

Carry-lookahead implementation

� Adder with propagate and generate outputs
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A0

B0

0

S0 @2

A1

B1

C1 @2

S1 @3

A2

B2

C2 @4

S2 @5

A3

B3

C3 @6

S3 @7

Cout @8

A0

B0

0

S0 @2

A1

B1

C1 @3

S1 @4

A2

B2

C2 @3

S2 @4

A3

B3

C3 @3

S3 @4

C4 @3 C4 @3

Carry-lookahead implementation (cont’d)

� Carry-lookahead logic generates individual carries

� sums computed much more quickly in parallel

� however, cost of carry logic increases with more stages
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Lookahead Carry Unit
C0

P0 G0P1 G1P2 G2P3 G3 C3 C2 C1

C0

P3-0 G3-0

C4

@3@2
@4

@3@2
@5

@3@2
@5

@3@2

@4

@5@3

@0
C16

A[15-12]B[15-12]
C12

S[15-12]

A[11-8] B[11-8]
C8

S[11-8]

A[7-4] B[7-4]
C4

S[7-4]
@7@8@8

A[3-0] B[3-0]
C0

S[3-0]

@0

@4

4 4

4

P G

4-bit Adder

4 4

4

P G

4-bit Adder

4 4

4

P G

4-bit Adder

4 4

4

P G

4-bit Adder

Carry-lookahead adder

with cascaded carry-lookahead logic

� Carry-lookahead adder

� 4 four-bit adders with internal carry lookahead

� second level carry lookahead unit extends lookahead to 16 bits

G = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0

P = P3 P2 P1 P0

C1 = G0 + P0 C0C2 = G1 + P1 G0 + P1 P0 C0
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4-Bit Adder
[3:0]

C0C4

4-bit adder
[7:4]

1C8

0C8

five
2:1 mux

01010101

adder 
low

adder
high

01

4-bit adder
[7:4]

C8 S7 S6 S5 S4 S3 S2 S1 S0

Carry-select adder

� Redundant hardware to make carry calculation go faster

� compute two high-order sums in parallel while waiting for carry-in

� one assuming carry-in is 0 and another assuming carry-in is 1

� select correct result once carry-in is finally computed
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logical and arithmetic operations
not all operations appear useful, but "fall out" of internal logic

S1
0
0

1
1

S0
0
1

0
1

Function
Fi = Ai

Fi = not Ai

Fi = Ai xor Bi
Fi = Ai xnor Bi

Comment
input Ai transferred to output
complement of Ai transferred to output

compute XOR of Ai, Bi
compute XNOR of Ai, Bi

M = 0, logical bitwise operations

M = 1, C0 = 0, arithmetic operations

0
0

1
1

0
1

0
1

F = A
F = not A

F = A plus B
F = (not A) plus B

input A passed to output
complement of A passed to output

sum of A and B
sum of B and complement of A

M = 1, C0 = 1, arithmetic operations

0
0
1
1

0
1
0
1

F = A plus 1
F = (not A) plus 1
F = A plus B plus 1

F = (not A) plus B plus 1

increment A
twos complement of A
increment sum of A and B
B minus A

Arithmetic logic unit design specification
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M
0

1

1

S1
0

0

1

1

0

0

1

1

0

0

1

1

S0
0

1

0

1

0

1

0

1

0

1

0

1

Ci
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1

Ai
0
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
0
1
1
0
0
1
1
0 
1
0
1
0
0
1
1
0
0
1
1

Bi
X
X
X
X
0
1
0
1
0
1
0
1
X
X
X
X
0
1
0
1
0
1
0
1
X
X
X
X
0
1
0
1
0
1
0
1

Fi
0
1
1
0
0
1
1
0
1
0
0
1
0
1
1
0
0
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
0
1
1
0

Ci+1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
1
0
1
0
0
0
1
1
0
0
1
1
1
1
1
0
1

Arithmetic logic unit design (cont’d)

� Sample ALU – truth table
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12 gates

\S1

\Bi

[35]

[35] M

M

M
S1
Bi

[33][33]

[33]

[33]

S0
Ai

[30]

[30]

[30]

[30]

[30]

Ci

Ci

Ci

Ci

Co

\Co

\Co

\Co

\[30]
\[35]

Fi

Arithmetic logic unit design (cont’d)

� Sample ALU – multi-level discrete gate logic implementation
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BiS1 AiS0 CiM

FiCi+1

X1

X2

X3

A1 A2

A3 A4

O1

first-level gates
use S0 to complement Ai

S0 = 0 causes gate X1 to pass Ai
S0 = 1 causes gate X1 to pass Ai'

use S1 to block Bi
S1 = 0 causes gate A1 to make Bi go forward as 0

(don't want Bi for operations with just A)
S1 = 1 causes gate A1 to pass Bi

use M to block Ci
M = 0 causes gate A2 to make Ci go forward as 0

(don't want Ci for logical operations)
M = 1 causes gate A2 to pass Ci

other gates
for M=0 (logical operations, Ci is ignored)
Fi = S1 Bi xor (S0 xor Ai)

= S1'S0' ( Ai ) + S1'S0 ( Ai' ) +
S1 S0' ( Ai Bi' + Ai' Bi ) + S1 S0 ( Ai' Bi' + Ai Bi )

for M=1 (arithmetic operations)
Fi = S1 Bi xor ( ( S0 xor Ai ) xor Ci ) = 
Ci+1 = Ci (S0 xor Ai) + S1 Bi ( (S0 xor Ai) xor Ci ) =

just a full adder with inputs S0 xor Ai, S1 Bi, and Ci

Arithmetic logic unit design (cont’d)

� Sample ALU – clever multi-level implementation
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Summary for examples of combinational logic

� Combinational logic design process

� formalize problem: encodings, truth-table, equations

� choose implementation technology (ROM, PAL, PLA, discrete gates)

� implement by following the design procedure for that technology

� Binary number representation

� positive numbers the same

� difference is in how negative numbers are represented

� 2s complement easiest to handle: one representation for zero, slightly 
complicated complementation, simple addition

� Circuits for binary addition

� basic half-adder and full-adder

� carry lookahead logic

� carry-select

� ALU Design

� specification, implementation


