

Formalize the problem									1.5.15		
¥ <u>Truth table</u> ⊠ show don't cares											
第 <u>Choose implementation target</u>	Α	В	С	D	C0	C1	C2	С3	C4	C5	C6
\square if ROM, we are done	0	0	0	0	1	1	1	1	1	1	0
☐ don't cares imply PAL/PLA	0	0	0	1	0	1	1	0	0	0	0
may be attractive	0	0	1	0	1	1	0	1	1	0	1
* Follow implementation procedure	0	0	1	1	1	1	1	1	0	0	1
I minimization using K-maps	0	1	0	0	0	1	1	0	0	1	1
minimization using K-maps	0	1	0	1	1	0	1	1	0	1	1
	0	1	1	0	1	0	1	1	1	1	1
	0	1	1	1		1	1	0	0	0	0
	1	0	0	0	1	1	1	1	1	1	1
	1	U	0	1	1	1	1	U	U	1	1
	1	0	1	-	-	-	-	-	-	-	-
	1	1	-	-	-	-	-	-	-	-	-
Autumn 2000 CSE370 - V - Combinational Logic Case Studies						4					

•		_				
2s complement a	ddition	n and su	btraction	and the second		
第 Simple addition and sub	etraction es 2s comp tems in com	lement the vinputers	rtually unanimous choice for	r		
4	0100	- 4	1100			
<u>+ 3</u>	0011	<u>+ (- 3</u>)	1101			
7	0111	- 7	11001			
4	0100	- 4	1100			
<u> </u>	<u> 110</u> 1	<u>+ 3</u>	0011			
1	10001	- 1	1111			
Autumn 2000 CSE	CSE370 - V - Combinational Logic Case Studies					

٦

Г

Overflow c	onditions			
₭ <u>Overflow whe</u>	<u>n carry into sign bit</u>	position is not equ	<u>al to carry-out</u>	
5 <u>3</u> – 8	0 1 1 1 0 1 0 1 <u>0 0 1 1</u> 1 0 0 0	-7 -2 7	1 0 0 0 1 0 0 1 <u>1 1 1 0</u> 1 0 1 1 1	
overflow	1	overflow		
5 _2 _7	0 0 0 0 0 1 0 1 <u>0 0 1 0</u> 0 1 1 1	- 3 <u>- 5</u> - 8	1 1 1 1 1 1 0 1 <u>1 0 1 1</u> 1 1 0 0 0	
no overf	low	no overflo	w	
Autumn 2000	CSE370 - V - Comb	pinational Logic Case Studies	5	32

Arithm	etic	logic unit desi	ign specification					
$M = 0, \log$	gical bi	twise operations						
S1	S0	Function	Comment					
0	0	Fi = Ai	input Ai transferred to output					
0	1	Fi = not Ai	complement of Ai transferred to output					
1	0	Fi = Ai xor Bi	compute XOR of Ai, Bi					
1	1	Fi = Ai xnor Bi	compute XNOR of Ai, Bi					
M = 1, C0	= 0,	arith metic operations						
0	0	F = A	input A passed to output					
0	1	F = not A	complement of A passed to output					
1	0	F = A plus B	sum of A and B					
1	1	F = (not A) plus B	sum of B and complement of A					
M = 1, C0	= 1, 8	arithmetic operations						
0	0	F = A plus 1	increment A					
0	1	F = (not A) plus 1	twos complement of A					
1	0	F = A plus B plus 1	increment sum of A and B					
1	1	F = (not A) plus B plus 1	B minus A					
	logical and arithmetic operations not all operations appear useful, but "fall out" of internal logic							
Autumn 2000		CSE370 - V - Combinatio	onal Logic Case Studies	44				

