Finite state machine optimization

- State minimization
- fewer states require fewer state bits
- fewer bits require fewer logic equations
- Encodings: state, inputs, outputs
- state encoding with fewer bits has fewer equations to implement - however, each may be more complex
- state encoding with more bits (e.g., one-hot) has simpler equations
- complexity directly related to complexity of state diagram
- input/output encoding may or may not be under designer control

Algorithmic approach to state minimization

- Goal - identify and combine states that have equivalent behavior
- Equivalent states:
- same output
- for all input combinations, states transition to same or equivalent states
- Algorithm sketch
- 1. place all states in one set
- 2. initially partition set based on output behavior
- 3. successively partition resulting subsets based on next state transitions
- 4. repeat (3) until no further partitioning is required
- states left in the same set are equivalent
- polynomial time procedure

State minimization example

- Sequence detector for 010 or 110

Method of successive partitions

Input	Next State	Output			
Sequence		$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
Reset	S0	S1	S2	0	0
0	S1	S3	S4	0	0
1	S2	S5	S6	0	0
00	S0	S0	0	0	
01	S5	S0	S0	1	0
10	S0	S0	0	0	
11			S0	1	0

(S0 S1 S2 S3 S4 S5 S6)
(S0 S1 S2 S3 S5) (S4 S6)
(S0 S3 S5) (S1 S2) (S4 S6)
(S0) (S3 S5) (S1 S2) (S4 S6)

S 1 is equivalent to S 2
S3 is equivalent to S5
S4 is equivalent to S6

Minimized FSM

- State minimized sequence detector for 010 or 110

Input Sequence	Present State	Next State		Output	
		$\mathrm{X}=0$	$\mathrm{X}=1$	X=0	X=1
Reset	S0	S1'	S1'	0	0
0 +1	S1'	S3'	S4'	0	0
x0	S3'	S0	S0	0	0
X1	S4'	S0	S0	1	0

More complex state minimization

- Multiple input example

symbolic state transition table

Minimized FSM

- Implication chart method
- cross out incompatible states based on outputs
- then cross out more cells if indexed chart entries are already crossed out

present state	next state				output
S0'	S0'	S1	S2	S3'	
S1	S0'	S3'	S1	S3'	0
S2	S1	S3' $^{\prime}$	S2	S0' $^{\prime}$	1
S3'	S1	S0' $^{\prime}$	S0'	S3'	0

minimized state table (S0==S4) (S3==S5)

Minimizing incompletely specified FSMs

- Equivalence of states is transitive when machine is fully specified
- But its not transitive when don't cares are present

e.g.,	state	output	
S0	-0	S1 is compatible with both S0 and S2	
S1	$1-$	but S0 and S2 are incompatible	
S2	-1		

- No polynomial time algorithm exists for determining best grouping of states into equivalent sets that will yield the smallest number of final states

Minimizing states may not yield best circuit

- Example: edge detector - outputs 1 when last two input changes from 0 to 1

X	Q_{1}	Q_{0}	$\mathrm{Q}_{1}{ }^{+} \mathrm{Q}_{0}{ }^{+}$	
0	0	0	0	0
0	0	1	0	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	1	1	1
-	1	0	0	0
$\mathrm{Q}_{1}{ }^{+}=\mathrm{X}$	$\left(\mathrm{Q}_{1}\right.$ xor $\left.\mathrm{Q}_{0}\right)$			
$\mathrm{Q}_{0}{ }^{+}=\mathrm{X}$	$\mathrm{Q}_{1}{ }^{\prime} \mathrm{Q}_{0}{ }^{\prime}$			

Another implementation of edge detector

- "Ad hoc" solution - not minimal but cheap and fast

State assignment

- Choose bit vectors to assign to each "symbolic" state
- with n state bits for m states there are $2^{n}!/\left(2^{n}-m\right)$!
$\left[\log n<=m<=2^{n}\right]$
- 2^{n} codes possible for 1 st state, $2^{n}-1$ for $2 n d, 2^{n}-2$ for 3 rd, \ldots
- huge number even for small values of n and m
- intractable for state machines of any size
- heuristics are necessary for practical solutions
- optimize some metric for the combinational logic
- size (amount of logic and number of FFs)
- speed (depth of logic and fanout)
- dependencies (decomposition)

State assignment strategies

- Possible strategies
- sequential - just number states as they appear in the state table
- random - pick random codes
- one-hot - use as many state bits as there are states (bit=1 -> state)
- output - use outputs to help encode states
- heuristic - rules of thumb that seem to work in most cases
- No guarantee of optimality - another intractable problem

One-hot state assignment

- Simple
- easy to encode
- easy to debug
- Small logic functions
- each state function requires only predecessor state bits as input
- Good for programmable devices
- lots of flip-flops readily available
- simple functions with small support (signals its dependent upon)
- Impractical for large machines
- too many states require too many flip-flops
- decompose FSMs into smaller pieces that can be one-hot encoded
- Many slight variations to one-hot
- one-hot + all-0

Heuristics for state assignment

- Adjacent codes to states that share a common next state - group 1's in next state map

I	Q	Q^{+}	O
i	a	c	j
i	b	c	k

$$
c=i * a+i * b
$$

i/j

- Adjacent codes to states that share a common ancestor state - group 1's in next state map

I	Q	Q^{+}	O
i	a	b	j
k	a	c	l

$\mathrm{b}=\mathrm{i} * \mathrm{a}$
$\mathrm{c}=\mathrm{k} * \mathrm{a}$

- Adjacent codes to states that have a common output behavior
- group 1's in output map

I	Q	Q^{+}	O
i	a	b	j
i	c	d	j

$$
\begin{aligned}
& j=i * a+i * c \\
& b=i * a \\
& d=i * c
\end{aligned}
$$

(a)

General approach to heuristic state assignment

- All current methods are variants of this
- 1) determine which states "attract" each other (weighted pairs)
- 2) generate constraints on codes (which should be in same cube)
- 3) place codes on Boolean cube so as to maximize constraints satisfied (weighted sum)
- Different weights make sense depending on whether we are optimizing for two-level or multi-level forms
- Can't consider all possible embeddings of state clusters in Boolean cube
- heuristics for ordering embedding
- to prune search for best embedding
- expand cube (more state bits) to satisfy more constraints

Output-based encoding

- Reuse outputs as state bits - use outputs to help distinguish states - why create new functions for state bits when output can serve as well - fits in nicely with synchronous Mealy implementations

Inputs		Present State	Next State	Outputs			
C	TL				ST	H	F
0	-	-	HG	HG	0	00	10
-	0	-	HG	HG	0	00	10
1	1	-	HG	HY	1	00	10
-	-	0	HY	HY	0	01	10
-	-	1	HY	FG	1	01	10
1	0	-	FG	FG	0	10	00
0	-	-	FG	FY	1	10	00
-	1	-	FG	FY	1	10	00
-	-	0	FY	HG	0	10	01
-	-	1			1	10	01

$$
\begin{aligned}
& \text { HG = ST' H1' H0' F1 F0' + ST H1 H0' F1' FO }
\end{aligned}
$$

FG = ST H1' H0 F1 FO' $+\mathrm{ST}^{\prime} \mathrm{H} 1$ H0' F1' F0'
Output patterns are unique to states, we do not
need ANY state bits - implement 5 functions
(one for each output) instead of 7 (outputs plus
$\mathrm{HY}=\mathrm{ST}$ H1 H0' $\mathrm{F1}^{\prime} \mathrm{FO} 0^{\prime}+\mathrm{ST}^{\prime} \mathrm{H} 1 \mathrm{HO}^{\prime} \mathrm{F} 1^{\prime} \mathrm{FO}$
2 state bits)

Current state assignment approaches

- For tight encodings using close to the minimum number of state bits
- best of 10 random seems to be adequate (averages as well as heuristics)
- heuristic approaches are not even close to optimality
- used in custom chip design
- One-hot encoding
- easy for small state machines
- generates small equations with easy to estimate complexity
- common in FPGAs and other programmable logic
- Output-based encoding
- ad hoc - no tools
- most common approach taken by human designers
- yields very small circuits for most FSMs

Sequential logic optimization summary

- State minimization
- straightforward in fully-specified machines
- computationally intractable, in general (with don't cares)
- State assignment
- many heuristics
- best-of-10-random just as good or better for most machines
- output encoding can be attractive (especially for PAL implementations)

