
1CSE370, Lecture 25

Overview

! Last lecture
" Sequential Logic Examples

! Today
" State encoding

#One-hot encoding
#Output encoding

2CSE370, Lecture 25

State encoding

! Assume n state bits and m states
" 2n! / (2n � m)! possible encodings [m ≥ n ≥ log2(m)]

#From binomial expansion
#Example: 3 state bits, 4 states, 1680 possible state assignments

! Hard problem, with no known algorithmic solution
" Can try heuristic approaches
" Can try to optimize some metric

#FSM size (amount of logic and number of FFs)
#FSM speed (depth of logic and fanout)
#FSM dependencies (decomposition)

! Need to consider startup
" Self-starting FSM or explicit reset input

3CSE370, Lecture 25

State-encoding strategies

! No guarantee of optimality
" An intractable problem

! Most common strategies
" Binary (sequential) � number states as in the state table
" Random � computer tries random encodings
" Heuristic � rules of thumb that seem to work well

#e.g. Gray-code � try to give adjacent states (states with an arc
between them) codes that differ in only one bit position

" One-hot � use as many state bits as there are states
" Output � use outputs to help encode states

4CSE370, Lecture 25

One-hot encoding

! One-hot: Encode n states using n flip-flops
" Assign a single �1� for each state

#Example: 0001, 0010, 0100, 1000
" Propagate a single �1� from one flip-flop to the next

#All other flip-flop outputs are �0�

! The inverse: One-cold encoding
" Assign a single �0� for each state

#Example: 1110, 1101, 1011, 0111
" Propagate a single �0� from one flip-flop to the next

#All other flip-flop outputs are �1�

! �almost one-hot� encoding
" Use no-hot (000�0) for the initial (reset state)
" Assumes you never revisit the reset state

5CSE370, Lecture 25

One-hot encoding (con�t)

! Often the best approach for FPGAs
" FPGAs have many flip-flops
" One-hot machines use the least next-state logic

! Draw FSM directly from the state diagram
" One product term per incoming arc
" But complex state diagram ⇒ complex design

! One-hot designs have many possible failure modes
" All states that aren�t one-hot
" Can create logic to reset the FSM if it enters illegal state

! Large machines require many flip-flops
" Decompose design into smaller one-hot encoded sub-designs

#n+m states for two machines versus n*m states for one

6CSE370, Lecture 25

! Release item after receiving 15 cents
" Single coin slot for dimes and nickels

#Sensor specifies coin type
" Machine does not give change

Vending machine again...

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

Vending
Machine

FSM

N

D

Reset

Clock

OpenCoin
Sensor

Release
Mechanism

7CSE370, Lecture 25

D0 = Q0D�N�

D1 = Q0N + Q1D�N�
D2 = Q0D + Q1N + Q2D�N�

D3 = Q1D + Q2D + Q2N + Q3

OPEN = Q3

One-hot encoded transition table

0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 1 0 0 0
1 1 � � � � �

0 0 1 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0
1 0 1 0 0 0 0
1 1 � � � � �

0 1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 � � � � �

1 0 0 0 � � 1 0 0 0 1

present state inputs next state output
Q3Q2Q1Q0 D N D3 D2D1D0 open

8CSE370, Lecture 25

One-hot encoded vending machine

D0 = Q0D�N�

D1 = Q0N + Q1D�N�
D2 = Q0D + Q1N + Q2D�N�

D3 = Q1D + Q2D + Q2N + Q3

OPEN = Q3

9CSE370, Lecture 25

Designing from the state diagram

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

D' N'

D' N'

D' N'

1

D0 = Q0D�N�

D1 = Q0N + Q1D�N�
D2 = Q0D + Q1N + Q2D�N�

D3 = Q1D + Q2D + Q2N + Q3

OPEN = Q3

10CSE370, Lecture 25

Output encoding

! Reuse outputs as state bits
" Why create new functions when you can use outputs?
" Bits from state assignments are the outputs for that state

#Take outputs directly from the flip-flops

! ad hoc - no tools
" Yields small circuits for most FSMs
" Fits nicely with synchronous Mealy machines

11CSE370, Lecture 25

Digital combination lock again...

! An output-encoded FSM
" Punch in 3 values in sequence and the door opens
" If there is an error the lock must be reset
" After the door opens the lock must be reset
" Inputs: sequence of number values, reset
" Outputs: door open/close

resetvalue

open/closed

new

clock

12CSE370, Lecture 25

Separate data path and control

! Design datapath first
" After the state diagram
" Before the state encoding

! Control has 2 outputs
" Mux control to datapath
" Lock open/closed

reset

open/closed

newC1 C2 C3

comparatorvalue
equal

multiplexer

controller

mux
control

clock
4

4 4 4

4

13CSE370, Lecture 25

Draw the state diagram

closed

closed
mux=C1

start equal
& new

not equal
& new not equal

& new not equal
& new

not newnot newnot new

S0 S1 S2 S3

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

14CSE370, Lecture 25

C1 C2 C3

comparator equal

multiplexer

mux
control

4

4 4 4

4
value

C1i C2i C3i

mux
control

valuei

equal

Design the datapath

! Choose simple control
" 3-wire mux for datapath

#Control is 001, 010, 100
" Open/closed bit for lock state

#Control is 0/1

15CSE370, Lecture 25

Output encode the FSM

! FSM outputs
" Mux control is 100, 010, 001
" Lock control is 0/1

! State are: S0, S1, S2, S3, or ERR
" Can use 3, 4, or 5 bits to encode
" Have 4 outputs, so choose 4 bits

#Encode mux control and lock control in state bits
#Lock control is first bit, mux control is last 3 bits

S0 = 0001 (lock closed, mux first code)
S1 = 0010 (lock closed, mux second code)
S2 = 0100 (lock closed, mux third code)
S3 = 1000 (lock open)

ERR = 0000 (error, lock closed)

16CSE370, Lecture 25

FSM has 4 state bits and 2 inputs...

! Output encoded!
" Outputs and state bits are the same

! How do we minimize the logic?
" FSM has 4 state bits and 2 inputs (equal, new)
" 6-variable kmap?

! Notice the state assignment is close to one-hot
" ERR state (0000) is only deviation
" Is there a clever design we can use?

17CSE370, Lecture 25

Preset and Reset?
closed

closed
mux=C1

start equal
& new

not equal
& new not equal

& new not equal
& new

not newnot newnot new

S0 S1 S2 S3

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

Assume flip-flops have
preset & reset inputs

Can we encode the
ERR state as reset?

18CSE370, Lecture 25

Answer: Yes!
closed

closed
mux=C1

start equal
& new

not equal
& new not equal

& new not equal
& new

not newnot newnot new

S0 S1 S2 S3

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

D0 = Q0N�
D1 = Q0EN + Q1N�
D2 = Q1EN + Q2N�
D3 = Q2EN + Q3

Preset0 = start
Preset1,2,3 = 0
Reset0 = start�(E�N + (Q0+Q1+Q2+Q3)�)
Reset1,2,3 = start + (E�N + (Q0+Q1+Q2+Q3)�)

19CSE370, Lecture 25

E'

N start

Q3

Q2

Q3
Clk

Q3

Q0

Q1
start

Q2

N
E

1

N'

Q2

N

Clk

Q2

E
Q1 1

N'

Q1

N
E

Clk

Q1

Q0 1

N'

Q0

Clk

start'

Q0

29

AND2

31

NOR2

25

NOR4

27

OR2
30

NAND2

17

OR2

6

D

DFF

CLRN

Q
PRN

18

AND3

5

D

DFF

CLRN

Q
PRN

12

AND3

13

AND2
11

OR2

4

D

DFF

CLRN

Q
PRN

8

AND3

9

AND2
10

OR2

1

D

DFF

CLRN

Q
PRN

7

AND2

20CSE370, Lecture 25

FSM design: A 5-step process

1. Understand the problem
� State diagram and state-transition table

2. Determine the machine�s states
� Consider missing transitions: Will the machine start?
� Minimize the state diagram: Reuse states where possible

3. Encode the states
� Encode states, outputs with a reasonable encoding choice
� Consider the implementation target

4. Design the next-state logic
� Minimize the combinational logic
� Choices made in steps 2 & 3 affect the logic complexity

5. Implement the FSM

