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Overview

! Last lecture
" Sequential Logic Examples

! Today
" State encoding

#One-hot encoding
#Output encoding
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State encoding

! Assume n state bits and m states
" 2n! / (2n � m)! possible encodings  [m ≥ n ≥ log2(m)]

#From binomial expansion
#Example: 3 state bits, 4 states, 1680 possible state assignments

! Hard problem, with no known algorithmic solution
" Can try heuristic approaches
" Can try to optimize some metric

#FSM size (amount of logic and number of FFs)
#FSM speed (depth of logic and fanout)
#FSM dependencies (decomposition)

! Need to consider startup
" Self-starting FSM or explicit reset input
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State-encoding strategies

! No guarantee of optimality 
" An intractable problem

! Most common strategies
" Binary (sequential) � number states as in the state table
" Random � computer tries random encodings
" Heuristic � rules of thumb that seem to work well

#e.g. Gray-code � try to give adjacent states (states with an arc 
between them) codes that differ in only one bit position

" One-hot � use as many state bits as there are states
" Output � use outputs to help encode states
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One-hot encoding

! One-hot: Encode n states using n flip-flops
" Assign a single �1� for each state

#Example: 0001, 0010, 0100, 1000
" Propagate a single �1� from one flip-flop to the next

#All other flip-flop outputs are �0�

! The inverse: One-cold encoding
" Assign a single �0� for each state

#Example: 1110, 1101, 1011, 0111
" Propagate a single �0� from one flip-flop to the next

#All other flip-flop outputs are �1�

! �almost one-hot� encoding
" Use no-hot (000�0) for the initial (reset state)
" Assumes you never revisit the reset state
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One-hot encoding (con�t)

! Often the best approach for FPGAs
" FPGAs have many flip-flops
" One-hot machines use the least next-state logic

! Draw FSM directly from the state diagram
" One product term per incoming arc
" But complex state diagram ⇒ complex design

! One-hot designs have many possible failure modes
" All states that aren�t one-hot
" Can create logic to reset the FSM if it enters illegal state

! Large machines require many flip-flops
" Decompose design into smaller one-hot encoded sub-designs

#n+m states for two machines versus n*m states for one
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! Release item after receiving 15 cents
" Single coin slot for dimes and nickels 

#Sensor specifies coin type 
" Machine does not give change

Vending machine again...
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D0 = Q0D�N�

D1 = Q0N + Q1D�N�
D2 = Q0D + Q1N + Q2D�N�

D3 = Q1D + Q2D + Q2N + Q3

OPEN = Q3

One-hot encoded transition table

0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 1 0 0 0
1 1 � � � � �

0 0 1 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0
1 0 1 0 0 0 0
1 1 � � � � �

0 1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 � � � � �

1 0 0 0 � � 1 0 0 0 1

present state inputs next state output
Q3Q2Q1Q0 D  N D3 D2D1D0 open
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One-hot encoded vending machine

D0 = Q0D�N�

D1 = Q0N + Q1D�N�
D2 = Q0D + Q1N + Q2D�N�

D3 = Q1D + Q2D + Q2N + Q3

OPEN = Q3
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Designing from the state diagram
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Output encoding

! Reuse outputs as state bits
" Why create new functions when you can use outputs?
" Bits from state assignments are the outputs for that state

#Take outputs directly from the flip-flops

! ad hoc - no tools
" Yields small circuits for most FSMs
" Fits nicely with synchronous Mealy machines
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Digital combination lock again...

! An output-encoded FSM
" Punch in 3 values in sequence and the door opens
" If there is an error the lock must be reset
" After the door opens the lock must be reset
" Inputs: sequence of number values, reset
" Outputs: door open/close

resetvalue

open/closed

new

clock
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Separate data path and control

! Design datapath first
" After the state diagram
" Before the state encoding

! Control has 2 outputs
" Mux control to datapath
" Lock open/closed
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Draw the state diagram
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Design the datapath

! Choose simple control
" 3-wire mux for datapath

#Control is 001, 010, 100
" Open/closed bit for lock state

#Control is 0/1
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Output encode the FSM

! FSM outputs
" Mux control is 100, 010, 001
" Lock control is 0/1

! State are: S0, S1, S2, S3, or ERR
" Can use 3, 4, or 5 bits to encode
" Have 4 outputs, so choose 4 bits

#Encode mux control and lock control in state bits
#Lock control is first bit, mux control is last 3 bits

S0 = 0001  (lock closed, mux first code)
S1 = 0010  (lock closed, mux second code)
S2 = 0100  (lock closed, mux third code)
S3 = 1000  (lock open)

ERR = 0000  (error, lock closed)
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FSM has 4 state bits and 2 inputs...

! Output encoded!
" Outputs and state bits are the same

! How do we minimize the logic?
" FSM has 4 state bits and 2 inputs (equal, new)
" 6-variable kmap?

! Notice the state assignment is close to one-hot
" ERR state (0000) is only deviation
" Is there a clever design we can use?
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Preset and Reset?
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Assume flip-flops have 
preset & reset inputs

Can we encode the 
ERR state as reset?
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Answer: Yes!
closed
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D0 = Q0N�
D1 = Q0EN + Q1N�
D2 = Q1EN + Q2N�
D3 = Q2EN + Q3

Preset0 = start
Preset1,2,3 = 0
Reset0 = start�(E�N + (Q0+Q1+Q2+Q3)�)
Reset1,2,3 = start + (E�N + (Q0+Q1+Q2+Q3)�)
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FSM design: A 5-step process

1. Understand the problem
� State diagram and state-transition table

2. Determine the machine�s states
� Consider missing transitions: Will the machine start?
� Minimize the state diagram: Reuse states where possible

3. Encode the states 
� Encode states, outputs with a reasonable encoding choice
� Consider the implementation target

4. Design the next-state logic
� Minimize the combinational logic
� Choices made in steps 2 & 3 affect the logic complexity

5. Implement the FSM


