
1CSE370, Lecture 26

Overview

! Last lecture
" State encoding

#One-hot encoding
#Output encoding

! Today: 
" Optimizing FSMs

#Pipelining
#Retiming
#Partitioning

" Conclusion of sequential logic

2CSE370, Lecture 26

Definitions

! Latency: Time to perform a computation
" Data input to data output

! Throughput: Input or output data rate
" Typically the clock rate

! Combinational delays drive performance
" Define d ≡ delay through slowest combinational stage

n ≡ number of stages from input to output
" Latency ∝ n × d   (in sec)
" Throughput ∝ 1/d   (in Hz)

3CSE370, Lecture 26

Pipelining

! What?
" Subdivide combinational logic
" Add registers between logic

! Why?
" Trade latency for throughput
" Increased throughput 

#Reduce logic delays
# Increase clock speed

" Increased latency
#Takes cycles to fill the pipe

" Increase circuit utilization
#Simultaneous computations

Logic Reg

Logic Reg   Logic   Reg

4CSE370, Lecture 26

Pipelining

! When?
" Need throughput more than latency

#Signal processing
" Logic delays > setup/hold times
" Acyclic logic

! Where?
" At natural breaks in the 

combinational logic
" Adding registers makes sense

Reg Logic  Reg

5CSE370, Lecture 26

Pipelining example

6CSE370, Lecture 26

Pipelining and clock skew

! Which is faster?

! Which is safer?



7CSE370, Lecture 26

Retiming

! Pipelining adds registers
" To increase the clock speed

! Retiming moves registers around
" Reschedules computations to optimize performance

#Minimize critical path
#Optimize logic across register boundaries
#Reduce register count

" Without altering functionality

8CSE370, Lecture 26

Retiming in a nutshell

! Change position of FFs
" For speed
" To suit implementation target

! Retiming modifies state 
assignment
" Preserves FSM functionality

b

a

?

a

a

b

b

a

b

×

9CSE370, Lecture 26

Retiming groundrules

! Rules:
" Remove one register from each input and add 

one to each output
" Remove one register from each output and add 

one to each input

Combinational logic

Register

10CSE370, Lecture 26

Retiming examples

! Reduce register count

! Change output delays

a
b d

xD Q
a

b d
x

D Q

D Q

11CSE370, Lecture 26

Optimal pipelining

" Add registers
" Use retiming to optimize location

871310

56

871310

56

Input

Input

Output

Output

Added registers
for pipelining

12CSE370, Lecture 26

++

δδ

+

δ δ

yt

xt

a0 a1 a2 a3

Example: Digital correlator

! yt = δ(xt, a0) + δ(xt�1, a1) + δ(xt�2, a2) + δ(xt�3, a3)
" δ(x, a) = 1 if x = a; 0 otherwise 

Input

Output



13CSE370, Lecture 26

++

δδ

+

δ δ

++

δδ

+

δ δ

Original design
cycle time = 24

Retimed design
cycle time = 13

Example: Digital correlator (cont�d)

! Delays: Comparator = 3; adder = 7

Input

Output

Input

Output

14CSE370, Lecture 26

FSM partitioning

! Break a large FSM into two or more smaller FSMs 

! Rationale
" Less states in each partition

#Simpler minimization and state assignment
#Smaller combinational logic
#Shorter critical path

" But more logic overall

! Goal
" Minimize communication between partitions

#Minimize wires & I/O

! Partitions are synchronous
" Same clock!!!

15CSE370, Lecture 26

C1

C2

C3

C4 C5

S1

S3

S2

S6

S4

S5

Example: Partition the machine

! Partition into two halves

16CSE370, Lecture 26

C1

C2

C5�S2

S6

S4

S5SB

C1�S1

C3�S2+
C4�S3

(C1�S1+
C3�S2+
C4�S3+
C5�S2)�

C4

S1

S3

S2 SA

C2�S6

C3+C5

(C2�S6)�

Introduce idle states

! SA and SB handoff control between machines
C1

C2

C3

C4 C5

S1

S3

S2

S6

S4

S5

17CSE370, Lecture 26

S1 S6
C1

SAS1
C1

S1 S6
C2

SAS1
C2�S6

Partitioning rules

Rule #1: Source-state transformation
Replace by transition to idle state (SA)

Rule #2: Destination state transformation
Replace with exit transition from idle state

18CSE370, Lecture 26

S2

S3

S5

S4
C4 C5

C3
S2

S3

SA

C3+C5

C4

S5

S4C5•S2

SB

C3•S2 + 
C4•S3

SAS1
C2•S6

C2•S6

Partitioning rules (con�t)

Rule #3: Multiple transitions with same source or destination
Source ⇒ Replace by transitions to idle state (SA)
Destination ⇒ Replace with exit transitions from idle state

Rule #4: Hold condition for idle state
OR exit conditions and invert



19CSE370, Lecture 26

Mealy versus Moore partitions

! Mealy machines undesirable
" Inputs can affect outputs immediately

# �output� can be a handoff to another machine!!!
" Inputs can ripple through several machines in one clock cycle

! Moore or synchronized Mealy desirable
" Input-to-output path always broken by a flip-flop
" But�may take several clocks for input to propagate to output

#Output may derive from other side of a partition

20CSE370, Lecture 26

D

U
S0

S2

S1

S5

S3

S4

U

U

U

U

U

D

D
D

D

D

Example: Six-state up/down counter

! Break into 2 parts

U ≡ count up
D ≡ count down

21CSE370, Lecture 26

D�S0

U
S5

S3

S4

U

UU�S2

D

DD

SB(D�S0+
U�S2)�D�S3

U

S0

S2

S1

U

U

U�S5

D

D

D
SA (D�S3 +

U�S5)�

Example: 6 state up/down counter (con�t)

! Count sequence S0, S1, S2, S3, S4, S5
" S2 goes to SA and holds, leaves after S5

" S5 goes to SB and holds, leaves after S2
" Down sequence is similar

22CSE370, Lecture 26

Minimize communication between partitions

! Ideal world: Two machines handoff control
" Separate I/O, states, etc.

! Real world: Minimize handoffs and common I/O
" Minimize number of state bits that cross boundary
" Merge common outputs

! Look for:
" Disjoint inputs used in different regions of state diagram
" Outputs active in only one region of state diagram
" Isomorphic portions of state diagram

#Add states, if necessary, to make them so
" Regions of diagram with a single entry and single exit point

23CSE370, Lecture 26

Sequential logic: What you should know

! Sequential logic building blocks
" Latches (R-S and D)
" Flip-flops (master/slave D, edge-triggered D & T)
" Latch and flip-flop timing (setup/hold time, prop delay)
" Timing diagrams
" Flip-flop clocking
" Asynchronous inputs and metastability
" Registers

24CSE370, Lecture 26

Sequential logic: What you should know

! Counters
" Timing diagrams
" Shift registers
" Ripple counters
" State diagrams and state-transition tables
" Counter design procedure

1.  Draw a state diagram
2.  Draw a state-transition table
3.  Encode the next-state functions
4.  Implement the design

" Self-starting counters



25CSE370, Lecture 26

! Finite state machines 
" Timing diagrams (synchronous FSMs)
" Moore versus Mealy versus registered Mealy
" FSM design procedure

1.Understand the problem (state diagram & state-transition table)
2.Determine the machine�s states (minimize the state diagram)
3. Encode the machine�s states (state assignment)
4.Design the next-state logic (minimize the combinational logic)
5. Implement the FSM

" FSM design guidelines
#Separate datapath and control

" One-hot encoding
" Pipelining and retiming basics

Sequential logic: What you should know


