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Overview

! Last lecture
" State encoding

#One-hot encoding
#Output encoding

! Today: 
" Optimizing FSMs

#Pipelining
#Retiming
#Partitioning

" Conclusion of sequential logic
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Definitions

! Latency: Time to perform a computation
" Data input to data output

! Throughput: Input or output data rate
" Typically the clock rate

! Combinational delays drive performance
" Define d ≡ delay through slowest combinational stage

n ≡ number of stages from input to output
" Latency ∝ n × d   (in sec)
" Throughput ∝ 1/d   (in Hz)
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Pipelining

! What?
" Subdivide combinational logic
" Add registers between logic

! Why?
" Trade latency for throughput
" Increased throughput 

#Reduce logic delays
# Increase clock speed

" Increased latency
#Takes cycles to fill the pipe

" Increase circuit utilization
#Simultaneous computations
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Pipelining

! When?
" Need throughput more than latency

#Signal processing
" Logic delays > setup/hold times
" Acyclic logic

! Where?
" At natural breaks in the 

combinational logic
" Adding registers makes sense

Reg Logic  Reg
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Pipelining example

6CSE370, Lecture 26

Pipelining and clock skew

! Which is faster?

! Which is safer?
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Retiming

! Pipelining adds registers
" To increase the clock speed

! Retiming moves registers around
" Reschedules computations to optimize performance

#Minimize critical path
#Optimize logic across register boundaries
#Reduce register count

" Without altering functionality
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Retiming in a nutshell

! Change position of FFs
" For speed
" To suit implementation target

! Retiming modifies state 
assignment
" Preserves FSM functionality
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Retiming groundrules

! Rules:
" Remove one register from each input and add 

one to each output
" Remove one register from each output and add 

one to each input

Combinational logic

Register

10CSE370, Lecture 26

Retiming examples

! Reduce register count

! Change output delays
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Optimal pipelining

" Add registers
" Use retiming to optimize location
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Added registers
for pipelining
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Example: Digital correlator

! yt = δ(xt, a0) + δ(xt�1, a1) + δ(xt�2, a2) + δ(xt�3, a3)
" δ(x, a) = 1 if x = a; 0 otherwise 

Input

Output
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Original design
cycle time = 24

Retimed design
cycle time = 13

Example: Digital correlator (cont�d)

! Delays: Comparator = 3; adder = 7

Input

Output

Input
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FSM partitioning

! Break a large FSM into two or more smaller FSMs 

! Rationale
" Less states in each partition

#Simpler minimization and state assignment
#Smaller combinational logic
#Shorter critical path

" But more logic overall

! Goal
" Minimize communication between partitions

#Minimize wires & I/O

! Partitions are synchronous
" Same clock!!!
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Example: Partition the machine

! Partition into two halves
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Introduce idle states

! SA and SB handoff control between machines
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Partitioning rules

Rule #1: Source-state transformation
Replace by transition to idle state (SA)

Rule #2: Destination state transformation
Replace with exit transition from idle state
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Partitioning rules (con�t)

Rule #3: Multiple transitions with same source or destination
Source ⇒ Replace by transitions to idle state (SA)
Destination ⇒ Replace with exit transitions from idle state

Rule #4: Hold condition for idle state
OR exit conditions and invert
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Mealy versus Moore partitions

! Mealy machines undesirable
" Inputs can affect outputs immediately

# �output� can be a handoff to another machine!!!
" Inputs can ripple through several machines in one clock cycle

! Moore or synchronized Mealy desirable
" Input-to-output path always broken by a flip-flop
" But�may take several clocks for input to propagate to output

#Output may derive from other side of a partition
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Example: Six-state up/down counter

! Break into 2 parts

U ≡ count up
D ≡ count down
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Example: 6 state up/down counter (con�t)

! Count sequence S0, S1, S2, S3, S4, S5
" S2 goes to SA and holds, leaves after S5

" S5 goes to SB and holds, leaves after S2
" Down sequence is similar
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Minimize communication between partitions

! Ideal world: Two machines handoff control
" Separate I/O, states, etc.

! Real world: Minimize handoffs and common I/O
" Minimize number of state bits that cross boundary
" Merge common outputs

! Look for:
" Disjoint inputs used in different regions of state diagram
" Outputs active in only one region of state diagram
" Isomorphic portions of state diagram

#Add states, if necessary, to make them so
" Regions of diagram with a single entry and single exit point

23CSE370, Lecture 26

Sequential logic: What you should know

! Sequential logic building blocks
" Latches (R-S and D)
" Flip-flops (master/slave D, edge-triggered D & T)
" Latch and flip-flop timing (setup/hold time, prop delay)
" Timing diagrams
" Flip-flop clocking
" Asynchronous inputs and metastability
" Registers
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Sequential logic: What you should know

! Counters
" Timing diagrams
" Shift registers
" Ripple counters
" State diagrams and state-transition tables
" Counter design procedure

1.  Draw a state diagram
2.  Draw a state-transition table
3.  Encode the next-state functions
4.  Implement the design

" Self-starting counters
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! Finite state machines 
" Timing diagrams (synchronous FSMs)
" Moore versus Mealy versus registered Mealy
" FSM design procedure

1.Understand the problem (state diagram & state-transition table)
2.Determine the machine�s states (minimize the state diagram)
3. Encode the machine�s states (state assignment)
4.Design the next-state logic (minimize the combinational logic)
5. Implement the FSM

" FSM design guidelines
#Separate datapath and control

" One-hot encoding
" Pipelining and retiming basics

Sequential logic: What you should know


