
1CSE370, Lecture 14

Overview

! Last lecture
" Adders 

#Ripple-carry 
#Carry-lookahead
#Carry-select

" The conclusion of combinational logic!!! 

! Today
" Introduction to sequential logic and systems

#The basic concepts
#A simple example

2CSE370, Lecture 14

Sequential versus combinational

B

A C

clock

Apply fixed inputs A, B
Wait for clock edge

Observe C
Wait for another clock edge

Observe C again

Combinational: C will stay the same
Sequential: C may be different

3CSE370, Lecture 14

Sequential logic

! Two types
" Synchronous = clocked
" Asynchronous = self-timed

! Has state
" State = memory

! Employs feedback

! Assumes steady-state signals
" Signals are valid after they have settled
" State elements hold their settled output values

4CSE370, Lecture 14

Sequential versus combinational (again)

! Combinational systems are memoryless
" Outputs depend only on the present inputs 

! Sequential systems have memory
" Outputs depend on the present and the previous inputs

Inputs OutputsSystem

Inputs
OutputsSystem

Feedback

5CSE370, Lecture 14

Synchronous sequential systems

! Memory holds a system�s state
" Changes in state occur at specific times
" A periodic signal times or clocks the state changes 
" The clock period is the time between state changes

period

duty cycle = pulsewidth/period 
(here it is 50%)

pulsewidth

B

A C

clock
State changes occur 

at rising edge of clock

clock

6CSE370, Lecture 14

Steady-state abstraction

! Outputs retain their settled values
" The clock period must be long enough for all voltages to 

settle to a steady state before the next state change

B

A C

clock

clock

C

Settled value

Clock hides transient 
behavior



7CSE370, Lecture 14

Example: A sequential system

! Door combination lock
" Enter 3 numbers in sequence and the door opens
" If there is an error the lock must be reset
" After the door opens the lock must be reset
" Inputs: Sequence of numbers, reset
" Outputs: Door open/close
" Memory: Must remember the combination

8CSE370, Lecture 14

Understand the problem

! Consider I/O and unknowns
" How many bits per input?
" How many inputs in sequence?
" How do we know a new input is entered?
" How do we represent the system states?

resetvalue

open/closed

new

clock

9CSE370, Lecture 14

Implement using sequential logic

! Behavior
" Clock tells us when to look at inputs

#After inputs have settled
" Sequential: Enter sequence of numbers
" Sequential: Remember if error occurred

! Need a finite-state diagram
" Assume synchronous inputs
" State sequence

#Enter 3 numbers serially
#Remember if error occurred

" All states have outputs
#Lock open or closed

resetvalue

open/closed

new

clock

10CSE370, Lecture 14

Finite-state diagram

! States: 5
" Each state has outputs

! Outputs: open/closed

! Inputs: reset, new, results of 
comparisons
" Assume synchronous inputs

closed closedclosed
C1== value

& new
C2== value

& new
C3== value

& new

C1!= value
& new C2!= value

& new
C3!= value

& new

closed

reset

not newnot newnot new

S1 S2 S3 OPEN

ERR

open

We use state diagrams to 
represent sequential logic

System transitions between 
finite numbers of states

11CSE370, Lecture 14

Separate data path and control

! Data path
" Stores combination
" Compares inputs with 

combination

! Control
" Finite state-machine controller
" Control for data path
" State changes clocked

reset

open/closed

newC1 C2 C3

comparatorvalue
equal

multiplexer

controller

mux
control

clock
4

4 4 4

4

12CSE370, Lecture 14

Refine diagram; generate state table

! Refine state diagram to 
include internal structure

! Generate 
state table

closed

closed
mux=C1reset equal

& new

not equal
& new not equal

& new not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

reset new equal state state mux open/closed
1 � � � S1 C1 closed
0 0 � S1 S1 C1 closed
0 1 0 S1 ERR � closed
0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN � open
...

next



13CSE370, Lecture 14

Encode state table

! State can be: S1, S2, S3, OPEN, or ERR
" Need at least 3 bits to encode: 000, 001, 010, 011, 100
" Can use 5 bits: 00001, 00010, 00100, 01000, 10000
" Choose 4 bits: 0001, 0010, 0100, 1000, 0000

! Output to mux can be: C1, C2, or C3
" Need 2 or 3 bits to encode
" Choose 3 bits: 001, 010, 100

! Output open/closed can be: Open or closed
" Need 1 or 2 bits to encode
" Choose 1 bit: 1, 0

14CSE370, Lecture 14

reset new equal state state mux open/closed
1 � � � 0001 001 0
0 0 � 0001 0001 001 0
0 1 0 0001 0000 � 0
0 1 1 0001 0010 010 0
...
0 1 1 0100 1000 � 1
...

next

Encode state table (con�t)

! Good encoding choice!
" Mux control is identical to last 3 state bits
" Open/closed is identical to first state bit
" Output encoding ⇒ the outputs and state bits are the same

15CSE370, Lecture 14

reset

open/closed

new equal

mux 
control

clock

comb. logic

state

special circuit element, 
called a register, for 
storing inputs when 
told to by the clock

Implementing the controller

! We will learn how to 
design the controller 
given the encoded 
state-transition table

16CSE370, Lecture 14

C1 C2 C3

comparator equal

multiplexer

mux 
control

4

4 4 4

4
value

C1i C2i C3i

mux 
control

valuei

equal

Designing the datapath

" Four 3:1 multiplexers 
#2-input ANDs and 3-input OR

" Four single-bit comparators 
#2-input XNORs 

" 4-input AND

17CSE370, Lecture 14

Where did we use memory?

! Memory: Stored combination, state (errors or 
successes in past inputs)

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux 
control

clock

18CSE370, Lecture 14

Where did we use feedback?

! Feedback: Comparator output ("equal" signal)

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux 
control

clock



19CSE370, Lecture 14

Where did we use clock?

! Clock synchronizes the inputs
" Accept inputs when clock goes high

! Controller is clocked
" Mux-control and open/closed signals change on the clock edge

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux 
control

clock

20CSE370, Lecture 14

Then next 5 weeks...

! We learn the details
" Latches, flip-flops, registers
" Shift registers, counters
" State machines
" Timing and timing diagrams
" Synchronous and asynchronous inputs

#Metastability
" Clock skew
" Moore and Mealy machines
" One-hot encoding
" More...


