Overview

& Last lecture
= Adders
¥ Ripple-carry
¥ Carry-lookahead
¥ Carry-select
= The conclusion of combinational logic!!!

& Today
= Introduction to sequential logic and systems
& The basic concepts
« A simple example

CSE370, Lecture 14 1

Sequential versus combinational

A
N | .c

B —»

Tclock

Apply fixed inputs A, B
Wait for clock edge
Observe C
Wait for another clock edge
Observe C again

Combinational: C will stay the same
Sequential: C may be different

CSE370, Lecture 14

Sequential logic

& Two types
= Synchronous = clocked
= Asynchronous = self-timed

& Has state
= State = memory

& Employs feedback

& Assumes steady-state signals
= Signals are valid after they have settled
= State elements hold their settled output values

CSE370, Lecture 14 3

Sequential versus combinational (again)

& Combinational systems are memoryless
= Outputs depend only on the present inputs

— F——>
Inputs ———* System [——* Outputs

PN B SN

Sequential systems have memory
= Outputs depend on the present and the previous inputs

>
——* System [——*> Outputs

Inputs

Feedback
CSE370, Lecture 14

Synchronous sequential systems

& Memory holds a system's state
= Changes in state occur at specific times
= A periodic signal times or clocks the state changes
» The clock period is the time between state changes

A —>|
,C
B —
State changes occur
Tclock at rising edge of clock
pulsewidth duty cycle = pulsewidth/period
[(here it is 50%)
clock LI L [1T L
[e——
period

CSE370, Lecture 14 5

Steady-state abstraction

& Outputs retain their settled values
= The clock period must be long enough for all voltages to
settle to a steady state before the next state change

A
— | .c
B —

TCIOCk Clock hides transient
behavior

clock I
(o

Settled value

CSE370, Lecture 14

Example: A sequential system

& Door combination lock

Enter 3 numbers in sequence and the door opens
If there is an error the lock must be reset

After the door opens the lock must be reset
Inputs: Sequence of numbers, reset

Outputs: Door open/close

Memory: Must remember the combination

CSE370, Lecture 14

Understand the problem

& Consider I/O and unknowns
= How many bits per input?
= How many inputs in sequence?
= How do we know a new input is entered?
= How do we represent the system states?

new value reset

clock —{>

open/closed

CSE370, Lecture 14 8

Implement using sequential logic

& Behavior
n Clock tells us when to look at inputs
¥ After inputs have settled
= Sequential: Enter sequence of numbers
= Sequential: Remember if error occurred

& Need a finite-state diagram
= Assume synchronous inputs
= State sequence

new value reset

¥ Enter 3 numbers serially
« Remember if error occurred

clock —{>
= All states have outputs

& Lock open or closed

open/closed

CSE370, Lecture 14

Finite-state diagram

& States: 5 & Inputs: reset, new, results of
= Each state has outputs comparisons

« Outputs: open/closed = Assume synchronous inputs

We use state diagrams to
represent sequential logic

System transitions between
finite numbers of states

C1!= value
&ne

1 ~—s3 PEN
reset —{ closed closed closed open
Cl== value C2== value C3== valu
& new & new & new
not new not new not new
CSE370, Lecture 14 10

Separate data path and control

+ Data path + Control
= Stores combination
= Compares inputs with = Control for data path

combination = State changes clocked

4 4] 4

multiplexer

controller

comparator

value

4

open/closed

CSE370, Lecture 14

= Finite state-machine controller

Refine diagram; generate state table

e o —
ERR
& Refine state diagram to
include internal structure
not equal
& not equal
s1 2 3/ &new PEN
closed ﬁo_s:di
reset —>{x—C1 equal >(nux=C}~ equal "\nux=CJ equar >\ °Pe"
& new & new & new
not new not new not new

¢ Generate
state table

CSE370, Lecture 14 12

Encode state table

& State can be: S1, S2, S3, OPEN, or ERR
= Need at least 3 bits to encode: 000, 001, 010, 011, 100
= Can use 5 bits: 00001, 00010, 00100, 01000, 10000
= Choose 4 bits: 0001, 0010, 0100, 1000, 0000

& Output to mux can be: C1, C2, or C3
= Need 2 or 3 bits to encode
= Choose 3 bits: 001, 010, 100

& Output open/closed can be: Open or closed
= Need 1 or 2 bits to encode
= Choose 1 bit: 1, 0

CSE370, Lecture 14 13

Encode state table (con't)

Good encoding choice!
= Mux control is identical to last 3 state bits
= Open/closed is identical to first state bit
= Output encoding = the outputs and state bits are the same

next
reset new equal state| state mux open/closed

1 - - - 0001 001 0
0 0 - 0001| 0001 001 0
0 1 0 0001(0000 — 0
0 1 1 0001f 0010 010 O

0 1 1 0100(1000 — 1

CSE370, Lecture 14 14

Implementing the controller

& We will learn how to special circuit element,
design the controller called a register, for
iven th n storing inputs when
given the e .COded told to by the clock
state-transition table

new‘ eqTaI r‘eset

mux comb. log 'c$
control comib. gl

[state{«1—clock

open/closed

CSE370, Lecture 14 15

Designing the datapath

= Four 3:1 multiplexers

& 2-input ANDs and 3-input OR value; CI,
= Four single-bit comparators — mux

& 2-input XNORs — control
= 4-input AND

4 4 4 mux
control
4

Va'“eme' equal
CSE370, Lecture 14 16

Where did we use memory?

& Memory: Stored combination, state (errors or
successes in past inputs)

new equal reset

value l
- mux
e
control controller ok
comparator cloc
equal open/closed
CSE370, Lecture 14 17

Where did we use feedback?

& Feedback: Comparator output ("equal” signal)

new equal reset

I

mux
control controller
o dlock
equal openvclosed

CSE370, Lecture 14 18

Where did we use clock?

Clock synchronizes the inputs
= Accept inputs when clock goes high

+ Controller is clocked
= Mux-control and open/closed signals change on the clock edge

new equal reset

S I

mux

L MIIpeE J«ooyrgr | conroller
le—clock

equal open/closed

CSE370, Lecture 14 19

Then next 5 weeks...

& We learn the details

Latches, flip-flops, registers

Shift registers, counters

State machines

Timing and timing diagrams

Synchronous and asynchronous inputs
« Metastability

Clock skew

Moore and Mealy machines

One-hot encoding

More...

CSE370, Lecture 14 20

