
1CSE370, Lecture 14

Overview

! Last lecture
" Adders 

#Ripple-carry 
#Carry-lookahead
#Carry-select

" The conclusion of combinational logic!!! 

! Today
" Introduction to sequential logic and systems

#The basic concepts
#A simple example
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Sequential versus combinational

B

A C

clock

Apply fixed inputs A, B
Wait for clock edge

Observe C
Wait for another clock edge

Observe C again

Combinational: C will stay the same
Sequential: C may be different
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Sequential logic

! Two types
" Synchronous = clocked
" Asynchronous = self-timed

! Has state
" State = memory

! Employs feedback

! Assumes steady-state signals
" Signals are valid after they have settled
" State elements hold their settled output values

4CSE370, Lecture 14

Sequential versus combinational (again)

! Combinational systems are memoryless
" Outputs depend only on the present inputs 

! Sequential systems have memory
" Outputs depend on the present and the previous inputs

Inputs OutputsSystem

Inputs
OutputsSystem

Feedback
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Synchronous sequential systems

! Memory holds a system�s state
" Changes in state occur at specific times
" A periodic signal times or clocks the state changes 
" The clock period is the time between state changes

period

duty cycle = pulsewidth/period 
(here it is 50%)

pulsewidth

B

A C

clock
State changes occur 

at rising edge of clock

clock
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Steady-state abstraction

! Outputs retain their settled values
" The clock period must be long enough for all voltages to 

settle to a steady state before the next state change

B

A C

clock

clock

C

Settled value

Clock hides transient 
behavior
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Example: A sequential system

! Door combination lock
" Enter 3 numbers in sequence and the door opens
" If there is an error the lock must be reset
" After the door opens the lock must be reset
" Inputs: Sequence of numbers, reset
" Outputs: Door open/close
" Memory: Must remember the combination
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Understand the problem

! Consider I/O and unknowns
" How many bits per input?
" How many inputs in sequence?
" How do we know a new input is entered?
" How do we represent the system states?

resetvalue

open/closed

new

clock
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Implement using sequential logic

! Behavior
" Clock tells us when to look at inputs

#After inputs have settled
" Sequential: Enter sequence of numbers
" Sequential: Remember if error occurred

! Need a finite-state diagram
" Assume synchronous inputs
" State sequence

#Enter 3 numbers serially
#Remember if error occurred

" All states have outputs
#Lock open or closed

resetvalue

open/closed

new

clock
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Finite-state diagram

! States: 5
" Each state has outputs

! Outputs: open/closed

! Inputs: reset, new, results of 
comparisons
" Assume synchronous inputs

closed closedclosed
C1== value

& new
C2== value

& new
C3== value

& new

C1!= value
& new C2!= value

& new
C3!= value

& new

closed

reset

not newnot newnot new

S1 S2 S3 OPEN

ERR

open

We use state diagrams to 
represent sequential logic

System transitions between 
finite numbers of states
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Separate data path and control

! Data path
" Stores combination
" Compares inputs with 

combination

! Control
" Finite state-machine controller
" Control for data path
" State changes clocked

reset

open/closed

newC1 C2 C3

comparatorvalue
equal

multiplexer

controller

mux
control

clock
4

4 4 4

4
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Refine diagram; generate state table

! Refine state diagram to 
include internal structure

! Generate 
state table

closed

closed
mux=C1reset equal

& new

not equal
& new not equal

& new not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

reset new equal state state mux open/closed
1 � � � S1 C1 closed
0 0 � S1 S1 C1 closed
0 1 0 S1 ERR � closed
0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN � open
...

next
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Encode state table

! State can be: S1, S2, S3, OPEN, or ERR
" Need at least 3 bits to encode: 000, 001, 010, 011, 100
" Can use 5 bits: 00001, 00010, 00100, 01000, 10000
" Choose 4 bits: 0001, 0010, 0100, 1000, 0000

! Output to mux can be: C1, C2, or C3
" Need 2 or 3 bits to encode
" Choose 3 bits: 001, 010, 100

! Output open/closed can be: Open or closed
" Need 1 or 2 bits to encode
" Choose 1 bit: 1, 0
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reset new equal state state mux open/closed
1 � � � 0001 001 0
0 0 � 0001 0001 001 0
0 1 0 0001 0000 � 0
0 1 1 0001 0010 010 0
...
0 1 1 0100 1000 � 1
...

next

Encode state table (con�t)

! Good encoding choice!
" Mux control is identical to last 3 state bits
" Open/closed is identical to first state bit
" Output encoding ⇒ the outputs and state bits are the same
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reset

open/closed

new equal

mux 
control

clock

comb. logic

state

special circuit element, 
called a register, for 
storing inputs when 
told to by the clock

Implementing the controller

! We will learn how to 
design the controller 
given the encoded 
state-transition table
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C1 C2 C3

comparator equal

multiplexer

mux 
control

4

4 4 4

4
value

C1i C2i C3i

mux 
control

valuei

equal

Designing the datapath

" Four 3:1 multiplexers 
#2-input ANDs and 3-input OR

" Four single-bit comparators 
#2-input XNORs 

" 4-input AND
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Where did we use memory?

! Memory: Stored combination, state (errors or 
successes in past inputs)

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux 
control

clock
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Where did we use feedback?

! Feedback: Comparator output ("equal" signal)

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux 
control

clock
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Where did we use clock?

! Clock synchronizes the inputs
" Accept inputs when clock goes high

! Controller is clocked
" Mux-control and open/closed signals change on the clock edge

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux 
control

clock
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Then next 5 weeks...

! We learn the details
" Latches, flip-flops, registers
" Shift registers, counters
" State machines
" Timing and timing diagrams
" Synchronous and asynchronous inputs

#Metastability
" Clock skew
" Moore and Mealy machines
" One-hot encoding
" More...


