
1CSE370, Lecture 16

Overview

! Last lecture
" Latches
" Flip-flops

#Edge-triggered D
#Master-slave

" Timing diagrams

! Today
" Sequential Verilog

2CSE370, Lecture 16

Variables

! wire
" Connects components together

! reg
" Saves a value

#Part of a behavioral description
" Does NOT necessarily become a register when you synthesize

#May become a wire

! The rule
" Declare a variable as reg if it is a target of an assignment

statement
#Continuous assign doesn�t count

3CSE370, Lecture 16

Sequential Verilog

! Sequential circuits: Registers & combinational logic
" Use positive edge-triggered registers
" Avoid latches and negative edge-triggered registers

! Register is triggered by �posedge clk�

module register(Q, D, clock);
input D, clock;
output Q;
reg Q;

always @(posedge clock) begin
Q = D;

end
endmodule

Example: A D flip-flop

A real register. Holds Q
between clock edges

4CSE370, Lecture 16

always block

! A procedure that describes a circuit�s function
" Can contain multiple statements
" Can contain if, for, while, case
" Triggers at the specified conditions
" begin/end groups statements within always block

module register(Q, D, clock);
input D, clock;
output Q;
reg Q;

always @(posedge clock) begin
Q = D;

end
endmodule

5CSE370, Lecture 16

module and_gate(out, in1, in2);

input in1, in2;

output out;

reg out;

always @(in1 or in2) begin

out = in1 & in2;

end

endmodule

Not a real register!!
Holds assignment in
always block

specifies when block is executed
i.e. triggered by changes in in1 or in2

always example

The compiler will not synthesize
this code to a register, because
out changes whenever in1 or in2
change. Can instead simply write
wire out, in1, in2;

and (out, in1, in2);

6CSE370, Lecture 16

module and_gate (out, in1, in2);
input in1, in2;
output out;
reg out;

always @(in1) begin
out = in1 & in2;

end
endmodule

Incomplete trigger or incomplete assignment

! What if you omit an input trigger (e.g. in2)
" Compiler will insert a register to hold the state
" Becomes a sequential circuit � NOT what you want

2 rules:
1) Include all inputs in the trigger list
2) Use complete assignments
⇒ Every path must lead to an assignment for out
⇒ Otherwise out needs a state element

A real register!! Holds out
because in2 isn�t specified
in always trigger

7CSE370, Lecture 16

Assignments

! Be careful with always assignments
" Which of these statements generate a latch?

always @(c or x) begin
if (c) begin

value = x;
end
y = value;

end

always @(c or x) begin
value = x;
if (c) begin

value = 0;
end
y = value;

end

always @(c or x) begin
if (c)

value = 0;
else if (x)

value = 1;
end

always @(a or b)
f = a & b & c;

end

8CSE370, Lecture 16

module and_gate (out, in1, in2);
input in1, in2;
output out;

assign out = myfunction(in1, in2);
function myfunction;
input in1, in2;
begin

myfunction = in1 & in2;
end

endfunction
endmodule

Benefits:
Functions force a result
⇒ Compiler will fail if function

does not generate a result
⇒ If you build a function wrong

the circuit will not synthesize.
If you build an always block
wrong you get a register

Another way: Use functions

! Functions for combinational logic
" Functions can�t have state

9CSE370, Lecture 16

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

always @(sel or A or B or C or D)
if (sel == 2’b00) Y = A;
else if (sel == 2’b01) Y = B;
else if (sel == 2’b10) Y = C;
else if (sel == 2’b11) Y = D;

endmodule

if

! Same as C if statement

⇒ Single if statements synthesize to multiplexers
⇒ Nested if /else statements usually synthesize to logic

10CSE370, Lecture 16

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

always @(sel or A or B or C or D)
if (sel[0] == 0)

if (sel[1] == 0) Y = A;
else Y = B;

else
if (sel[1] == 0) Y = C;
else Y = D;

endmodule

if (another way)

11CSE370, Lecture 16

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

always @(sel or A or B or C or D)
case (sel)
2’b00: Y = A;
2’b01: Y = B;
2’b10: Y = C;
2’b11: Y = D;

endcase
endmodule

case

case executes sequentially
⇒ First match executes
⇒ Don�t need to break out of case

case statements synthesize to muxes

12CSE370, Lecture 16

case (another way)
// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control
signal
input A, B, C, D;
output Y;

assign out = mymux(sel, A, B, C, D);
function mymux;

input [1:0] sel, A, B, C, D;
begin

case (sel)
2’b00: mymux = A;
2’b01: mymux = B;
2’b10: mymux = C;
2’b11: mymux = D;

endcase
end

endfunction
endmodule

Note: You can define a function in a file
Then include it into your Verilog module

13CSE370, Lecture 16

// Simple binary encoder (input is 1-hot)
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment

always @(A)
case (A)

8’b00000001: Y = 0;
8’b00000010: Y = 1;
8’b00000100: Y = 2;
8’b00001000: Y = 3;
8’b00010000: Y = 4;
8’b00100000: Y = 5;
8’b01000000: Y = 6;
8’b10000000: Y = 7;
default: Y = 3’bx; // Don’t care about other cases

endcase
endmodule

default case

If you omit the default, the compiler will
create a latch for Y
⇒ Either list all 256 cases
⇒ Or use a function (compiler will

warn you of missing cases)

14CSE370, Lecture 16

// Priority encoder
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment

always @(A)
case (1’b1)

A[0]: Y = 0;
A[1]: Y = 1;
A[2]: Y = 2;
A[3]: Y = 3;
A[4]: Y = 4;
A[5]: Y = 5;
A[6]: Y = 6;
A[7]: Y = 7;
default: Y = 3’bx; // Don’t care when input is all 0’s

endcase
endmodule

case executes sequentially

Case statements execute sequentially
⇒ Take the first alternative that matches

15CSE370, Lecture 16

// simple encoder
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment
integer i; // Temporary variables for program
reg [7:0] test;

always @(A) begin
test = 8b’00000001;
Y = 3’bx;
for (i = 0; i < 8; i = i + 1) begin

if (A == test) Y = i;
test = test << 1; // Shift left, pad with 0s

end
end

endmodule

for

for statements synthesize as
cascaded combinational logic

⇒ Verilog unrolls the loop

16CSE370, Lecture 16

Verilog while/repeat/forever

! while (expression) statement
" execute statement while expression is true

! repeat (expression) statement
" execute statement a fixed number of times

! forever statement
" execute statement forever

17CSE370, Lecture 16

always @(posedge CLK)
begin

temp = B;
B = A;
A = temp;

end

always @(posedge CLK)
begin

A <= B;
B <= A;

end

Blocking and non-blocking assignments

! Blocking assignments (Q = A)
" Variable is assigned immediately
" New value is used by subsequent statements

! Non-blocking assignments (Q <= A)
" Variable is assigned after all scheduled statements are executed
" Value to be assigned is computed but saved for later

! Example: Swap

18CSE370, Lecture 16

reg B, C, D;
always @(posedge clk)

begin
B <= A;
C <= B;
D <= C;

end

reg B, C, D;
always @(posedge clk)

begin
B = A;
C = B;
D = C;

end

Blocking and non-blocking assignments

19CSE370, Lecture 16

always @(posedge CLK)
begin

A = B;
end

always @(posedge CLK)
begin

B = A;
end

always @(posedge CLK)
begin

A <= B;
end

always @(posedge CLK)
begin

B <= A;
end

Swap

! The following code executes incorrectly
" One block executes first
" Loses previous value of variable

! Non-blocking assignment fixes this
" Both blocks are scheduled by posedge CLK

20CSE370, Lecture 16

Parallel versus serial execution

! assign statements are implicitly parallel
" �=� means continuous assignment
" Example

assign E = A & D;
assign A = B & C;

" A and E change if B changes

! always blocks execute in parallel
" always @(posedge clock)

! Procedural block internals not necessarily parallel
" �=� is a blocking assignment (sequential)
" �<=� is a nonblocking assignment (parallel)
" Examples of procedures: always, function, etc.

B

C

D

A

E

21CSE370, Lecture 16

wire [3:0] x, y, a, b, c, d;

assign apr = ^a;
assign y = a & ~b;
assign x = (a == b) ?

a + c : d + a;

x

+

+

==

a

b

c

d x
+

==

a

b

c

d

Synthesis examples

