
1CSE370, Lecture 8

Overview

! Last lecture
" Incompletely specified functions
" Design examples
" k-maps for POS minimization

! Today
" Verilog

#Structural constructs
#Describing combinational circuits

2CSE370, Lecture 8

Ways of specifying circuits

! Schematics
" Structural description
" Describe circuit as interconnected elements

#Build complex circuits using hierarchy
#Large circuits are unreadable

! HDLs
" Hardware description languages

#Not programming languages
#Parallel languages tailored to digital design

" Synthesize code to produce a circuit

3CSE370, Lecture 8

Hardware description languages (HDLs)

! Abel (~1983)
" Developed by Data-I/O
" Targeted to PLDs
" Limited capabilities (can do state machines)

! Verilog (~1985)
" Developed by Gateway (now part of Cadence)
" Similar to C
" Moved to public domain in 1990

! VHDL (~1987)
" DoD sponsored
" Similar to Ada

4CSE370, Lecture 8

Verilog versus VHDL

! Both �IEEE standard� languages

! Most tools support both

! Verilog is �simpler�
" Less syntax, fewer constructs

! VHDL is more structured
" Can be better for large, complex systems
" Better modularization

5CSE370, Lecture 8

HDL
description

�execution�

functional
validation

synthesis circuit

simulation

functional/timing
validation

Simulation versus synthesis

! Simulation
" �Execute� a design to verify correctness

! Synthesis
" Generate a netlist from HDL code

6CSE370, Lecture 8

Simulation versus synthesis (con�t)

! Simulation
" Models what a circuit does

#Multiply is �*�, ignoring implementation options
" Can include static timing
" Allows you to test design options

! Synthesis
" Converts your code to a netlist

#Can simulate synthesized design
" Tools map your netlist to hardware

! Verilog and VHDL simulate and synthesize
" CSE370: Learn simulation
" CSE467: Learn synthesis

7CSE370, Lecture 8

Simulation

! You provide an environment
" Using non-circuit constructs

#Read files, print, control simulation
" Using Verilog simulation code

#A �test fixture�

Simulation

Test Fixture
(Specification)

Circuit Description
(Synthesizeable)

Note: We will ignore
timing and test benches
until next Verilog lecture

8CSE370, Lecture 8

Levels of abstraction

! Verilog supports 4 description levels
" Switch
" Gate
" Dataflow
" Algorithmic

! Can mix & match levels in a design

! Designs that combine dataflow and algorithmic
constructs and synthesis are called RTL
" Register Transfer Level

structural

behavioral

9CSE370, Lecture 8

Structural versus behavioral Verilog

! Structural
" Describe explicit circuit elements
" Describe explicit connections between elements

#Connections between logic gates
" Just like schematics, but using text

! Behavioral
" Describe circuit as algorithms/programs

#What a component does
Input/output behavior

" Many possible circuits could have same behavior
#Different implementations of a Boolean function

10CSE370, Lecture 8

Verilog tips

! Do not write C-code
" Think hardware, not algorithms

#Verilog is inherently parallel
#Compilers don�t map algorithms to circuits well

! Do describe hardware circuits
" First draw a dataflow diagram
" Then start coding

! References
" Tutorial and reference manual are here:
" http://www.cs.washington.edu/education/courses/370/03sp/h

tml/compinfo.html

11CSE370, Lecture 8

// first simple example
module smpl (X,Y,A,B,C);
input A,B,C;
output X,Y;
wire E
and g1(E,A,B);
not g2(Y,C);
or g3(X,E,Y);

endmodule

Basic building blocks: Modules

" Instanced into a design
#Never called

" Illegal to nest module defs.
" Modules execute in parallel
" Names are case sensitive
" // for comments
" Name can�t begin with a number
" Use wires for connections
" and, or, not are keywords
" All keywords are lower case
" Gate declarations (and, or, etc)

#List outputs first
Inputs second

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

12CSE370, Lecture 8

Modules are circuit components

" Module has ports
#External connections
#A,B,C,X,Y in example

" Port types
input
#output
inout (tristate)

" Use assign statements for
Boolean expressions
#and ⇔ &
#or ⇔ |
#not ⇔ ~

// previous example as a
// Boolean expression
module smpl2 (X,Y,A,B,C);
input A,B,C;
output X,Y;
assign X = (A&B)|~C;
assign Y = ~C;

endmodule

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

13CSE370, Lecture 8

module xor_gate (out,a,b);
input a,b;
output out;
wire abar, bbar, t1, t2;
not inva (abar,a);
not invb (bbar,b);
and and1 (t1,abar,b);
and and2 (t2,bbar,a);
or or1 (out,t1,t2);

endmodule

Structural Verilog

8 basic gates (keywords):
and, or, nand, nor
buf, not, xor, xnor

bbar

t2

t1
abar

b

invb a
and2

a

inva b
and1

or1 out

5

NOT

7

AND2

4

NOT

6

AND2

8

OR2

14CSE370, Lecture 8

module full_addr (Sum,Cout,A,B,Cin);
input A, B, Cin;
output Sum, Cout;
assign {Cout, Sum} = A + B + Cin;

endmodule

A
B

Cin Cout
SumAdder

Behavioral Verilog

! Describe circuit behavior
" Not implementation

{Cout, Sum} is a concatenation

15CSE370, Lecture 8

Behavioral 4-bit adder

module add4 (SUM, OVER, A, B);
input [3:0] A;
input [3:0] B;
output [3:0] SUM;
output OVER;
assign {OVER, SUM[3:0]} = A[3:0] + B[3:0];

endmodule

�[3:0] A� is a 4-wire bus labeled �A�
Bit 3 is the MSB
Bit 0 is the LSB

Can also write �[0:3] A�
Bit 0 is the MSB
Bit 3 is the LSB

Buses are implicitly connected
If you write BUS[3:2], BUS[1:0]
They become part of BUS[3:0]

16CSE370, Lecture 8

Data types

! Values on a wire
" 0, 1, x (don�t care), z (tristate or unconnected)

! Vectors
" A[3:0] vector of 4 bits: A[3], A[2], A[1], A[0]

#Unsigned integer value
Indices must be constants

" Concatenating bits/vectors
#e.g. sign extend

$B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
$B[7:0] = {4{A[3]}, A[3:0]};

" Style: Use a[7:0] = b[7:0] + c;
Not a = b + c;

" Legal syntax: C = &A[6:7]; // logical and of bits 6 and 7 of A

17CSE370, Lecture 8

Numbers

! Format: <sign><size><base format><number>

! 14
" Decimal number

! �4�b11
" 4-bit 2�s complement binary of 0011 (is 1101)

! 12�b0000_0100_0110
" 12 bit binary number (_ is ignored)

! 3�h046
" 3-digit (12-bit) hexadecimal number

! Verilog values are unsigned
" C[4:0] = A[3:0] + B[3:0];

if A = 0110 (6) and B = 1010(�6), then C = 10000 (not 00000)
#B is zero-padded, not sign-extended

18CSE370, Lecture 8

Operators

Similar to C operators

19CSE370, Lecture 8

assign A = X | (Y & ~Z);

assign B[3:0] = 4'b01XX;

assign C[15:0] = 4'h00ff;

assign #3 {Cout, Sum[3:0]} = A[3:0] + B[3:0] + Cin;

arithmetic operator

multiple assignment (concatenation)Gate delay (used by simulator)

Boolean operators
(~ for bit-wise negation)

bits can assume four values
(0, 1, X, Z)

variables can be n-bits wide
(MSB:LSB)

Continuous assignment

! Assignment is continuously evaluated
" Corresponds to a logic gate
" Assignments execute in parallel

20CSE370, Lecture 8

module Compare1 (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;
assign Equal = (A & B) | (~A & ~B);
assign Alarger = (A & ~B);
assign Blarger = (~A & B);

endmodule

Example: A comparator

Top-down design and bottom-up design are both okay
⇒ module ordering doesn�t matter
⇒ because modules execute in parallel

21CSE370, Lecture 8

// Make a 4-bit comparator from 4 1-bit comparators

module Compare4(Equal, Alarger, Blarger, A4, B4);
input [3:0] A4, B4;
output Equal, Alarger, Blarger;
wire e0, e1, e2, e3, Al0, Al1, Al2, Al3, B10, Bl1, Bl2, Bl3;

Compare1 cp0(e0, Al0, Bl0, A4[0], B4[0]);
Compare1 cp1(e1, Al1, Bl1, A4[1], B4[1]);
Compare1 cp2(e2, Al2, Bl2, A4[2], B4[2]);
Compare1 cp3(e3, Al3, Bl3, A4[3], B4[3],);

assign Equal = (e0 & e1 & e2 & e3);
assign Alarger = (Al3 | (Al2 & e3) |

(Al1 & e3 & e2) |
(Al0 & e3 & e2 & e1));

assign Blarger = (~Alarger & ~Equal);
endmodule

Comparator example (con�t)

22CSE370, Lecture 8

module and_gate (out, in1, in2);
input in1, in2;
output out;

assign out = myfunction(in1, in2);
function myfunction;
input in1, in2;
begin
myfunction = in1 & in2;

end
endfunction

endmodule

Benefit:
Functions force a result
⇒ Compiler will fail if function

does not generate a result

Functions

! Use functions for complex combinational logic

23CSE370, Lecture 8

Overview

! Last lecture
" Verilog

#Structural constructs
#Describing combinational circuits

! Today
" Summary of 2-level combinational logic
" Class example: A 4-bit prime-number detector
" Quiz

24CSE370, Lecture 8

Summary of two-level combinational-logic

! Logic functions and truth tables
" AND, OR, Buf, NOT, NAND, NOR, XOR, XNOR
" Minimal set

! Axioms and theorems of Boolean algebra
" Proofs by re-writing
" Proofs by perfect induction (fill in truth table)

! Gate logic
" Networks of Boolean functions
" NAND/NOR conversion and de Morgan�s theorem

! Canonical forms
" Two-level forms
" Incompletely specified functions (don�t cares)

! Simplification
" Two-level simplification (K-maps)

25CSE370, Lecture 8

Solving combinational design problems

! Step 1: Understand the problem
" Identify the inputs and outputs
" Draw a truth table

! Step 2: Simplify the logic
" Draw a K-map
" Write a simplified Boolean expression

#SOP or POS
#Use don�t cares

! Step 3: Implement the design
" Logic gates and/or Verilog

