
Spring 2005 CSE370 - guest lecture 1

Example: vending machine

Release item after 15 cents are deposited
Single coin slot for dimes, nickels
No change

Reset

Vending
Machine

FSM

N
OpenCoin

Sensor
Release

Mechanism
D

Clock

Spring 2005 CSE370 - guest lecture 2

Example: vending machine (cont’d)

Suitable abstract representation
tabulate typical input sequences:

3 nickels
nickel, dime
dime, nickel
two dimes

draw state diagram:
inputs: N, D, reset
output: open chute

assumptions:
assume N and D asserted
for one cycle
each state has a self loop
for N = D = 0 (no coin)

S0

Reset

S2

D

S6
[open]

D

S4
[open]

D

S1

N

S3

N

S5
[open]

N

S8
[open]

D

S7
[open]

N

Spring 2005 CSE370 - guest lecture 3

Example: vending machine (cont’d)

Minimize number of states - reuse states whenever possible

symbolic state table

present inputs next output
state D N state open
0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

Spring 2005 CSE370 - guest lecture 4

Example: vending machine (cont’d)

Uniquely encode states

present state inputs next state output
Q1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 0
1 0 1 1 0
1 1 – – –

1 1 – – 1 1 1

Spring 2005 CSE370 - guest lecture 5

Example: Moore implementation

Mapping to logic

D1 = Q1 + D + Q0 N

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

OPEN = Q1 Q0

0 0 1 1

0 1 1 1

X X 1 X

1 1 1 1

Q1D1

Q0

N
D

0 1 1 0

1 0 1 1

X X 1 X

0 1 1 1

Q1D0

Q0

N
D

0 0 1 0

0 0 1 0

X X 1 X

0 0 1 0

Q1Open

Q0

N
D

Spring 2005 CSE370 - guest lecture 6

Example: vending machine (cont’d)

One-hot encoding

present state inputs next state output
Q3 Q2 Q1 Q0 D N D3 D2 D1 D0 open
0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 1 0 0
1 0 0 1 0 0 0
1 1 - - - - -

0 0 1 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0
1 0 1 0 0 0 0
1 1 - - - - -

0 1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 - - - - -

1 0 0 0 - - 1 0 0 0 1

D0 = Q0 D’ N’

D1 = Q0 N + Q1 D’ N’

D2 = Q0 D + Q1 N + Q2 D’ N’

D3 = Q1 D + Q2 D + Q2 N + Q3

OPEN = Q3

Spring 2005 CSE370 - guest lecture 7

Equivalent Mealy and Moore state diagrams

Moore machine
outputs associated with state

Mealy machine
outputs associated with transitions

0¢
[0]

10¢
[0]

5¢
[0]

15¢
[1]

N’ D’ + Reset

D

D

N

N+D

N

N’ D’

Reset’

N’ D’

N’ D’

Reset

0¢

10¢

5¢

15¢

(N’ D’ + Reset)/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0

Spring 2005 CSE370 - guest lecture 8

Example: Mealy implementation

0¢

10¢

5¢

15¢

Reset/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0
present state inputs next state output

Q1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 1
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 1
1 0 1 1 1
1 1 – – –

1 1 – – 1 1 1

D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1Open

Q0

N
D

Spring 2005 CSE370 - guest lecture 9

Example: Mealy implementation

D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

make sure OPEN is 0 when reset
– by adding AND gate

Spring 2005 CSE370 - guest lecture 10

Vending machine: Moore to synch. Mealy

OPEN = Q1Q0 creates a combinational delay after Q1 and Q0 change in
Moore implementation
This can be corrected by retiming, i.e., move flip-flops and logic through each
other to improve delay
OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
Implementation now looks like a synchronous Mealy machine

it is common for programmable devices to have FF at end of logic

Spring 2005 CSE370 - guest lecture 11

Vending machine: Mealy to synch. Mealy

OPEN.d = Q1Q0 + Q1N + Q1D + Q0D
OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D

0 0 1 0

0 0 1 1

1 0 1 1

0 1 1 1

Q1Open.d

Q0

N
D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1Open.d

Q0

N
D

Spring 2005 CSE370 - guest lecture 12

Hardware Description Languages
and Sequential Logic

Flip-flops
representation of clocks - timing of state changes
asynchronous vs. synchronous

FSMs
structural view (FFs separate from combinational logic)
behavioral view (synthesis of sequencers – not in this course)

Data-paths = data computation (e.g., ALUs, comparators) +
registers

use of arithmetic/logical operators
control of storage elements

Spring 2005 CSE370 - guest lecture 13

Example: reduce-1-string-by-1

Remove one 1 from every string of 1s on the input

Moore Mealy

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

1/00/0

0/0

1/1

zero

one1

Spring 2005 CSE370 - guest lecture 14

Verilog FSM - Reduce 1s example

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;

parameter zero = 2’b00;
parameter one1 = 2’b01;
parameter two1s = 2’b10;

reg out;
reg [2:1] state; // state variables
reg [2:1] next_state;

always @(posedge clk)
if (reset) state = zero;
else state = next_state;

state assignment
(easy to change,
if in one place)

Moore machine

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

Spring 2005 CSE370 - guest lecture 15

Moore Verilog FSM (cont’d)

always @(in or state)

case (state)
zero:

// last input was a zero
begin
if (in) next_state = one1;
else next_state = zero;

end
one1:

// we've seen one 1
begin
if (in) next_state = two1s;
else next_state = zero;

end
two1s:

// we've seen at least 2 ones
begin
if (in) next_state = two1s;
else next_state = zero;

end
endcase

crucial to include
all signals that are
input to state determination

note that output
depends only on state

always @(state)
case (state)
zero: out = 0;
one1: out = 0;

two1s: out = 1;
endcase

endmodule

Spring 2005 CSE370 - guest lecture 16

Mealy Verilog FSM
module reduce (clk, reset, in, out);

input clk, reset, in;
output out;
reg out;
reg state; // state variables
reg next_state;

always @(posedge clk)
if (reset) state = zero;
else state = next_state;

always @(in or state)
case (state)
zero: // last input was a zero
begin
out = 0;
if (in) next_state = one;
else next_state = zero;

end
one: // we've seen one 1
if (in) begin

next_state = one; out = 1;
end else begin

next_state = zero; out = 0;
end

endcase
endmodule

1/00/0

0/0

1/1

zero

one1

Spring 2005 CSE370 - guest lecture 17

Synchronous Mealy Machine

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables

always @(posedge clk)
if (reset) state = zero;
else
case (state)
zero: // last input was a zero
begin
out = 0;
if (in) state = one;
else state = zero;

end
one: // we've seen one 1
if (in) begin

state = one; out = 1;
end else begin

state = zero; out = 0;
end

endcase
endmodule

Spring 2005 CSE370 - guest lecture 18

State assignment

Choose bit vectors to assign to each “symbolic” state
with n state bits for m states there are 2n! / (2n – m)!

[log n <= m <= 2n]
2n codes possible for 1st state, 2n–1 for 2nd, 2n–2 for 3rd, …
huge number even for small values of n and m

intractable for state machines of any size
heuristics are necessary for practical solutions

optimize some metric for the combinational logic
size (amount of logic and number of FFs)
speed (depth of logic and fanout)
dependencies (decomposition)

Spring 2005 CSE370 - guest lecture 19

State assignment strategies

Possible strategies
sequential – just number states as they appear in the state table
random – pick random codes
one-hot – use as many state bits as there are states (bit=1 –> state)
output – use outputs to help encode states
heuristic – rules of thumb that seem to work in most cases

No guarantee of optimality – another intractable problem

Spring 2005 CSE370 - guest lecture 20

Current state assignment approaches

For tight encodings using close to the minimum number of state bits
best of 10 random seems to be adequate (averages as well as heuristics)
heuristic approaches are not even close to optimality
used in custom chip design

One-hot encoding
easy for small state machines
generates small equations with easy to estimate complexity
common in FPGAs and other programmable logic

Output-based encoding
ad hoc - no tools
most common approach taken by human designers
yields very small circuits for most FSMs
popular in PLDs

Spring 2005 CSE370 - guest lecture 21

State machines
and PLDs

Moore and synchronous
Mealy most common
Output-directed state
assignment

All outputs already
have FFs and are fed
back in as input to
logic array
Use these as part
of the state register
Add only as many
extra states bits as
needed to make
all state codes unique

Spring 2005 CSE370 - guest lecture 22

Implementation using PALs

D Q
Q

Programmable logic building block for sequential logic
macro-cell: FF + logic

D-FF
two-level logic capability like PAL (e.g., 8 product terms)

Spring 2005 CSE370 - guest lecture 23

22V10 PAL

Combinational logic
elements (SoP)
Sequential logic
elements (D-FFs)
Up to 10 outputs
Up to 10 FFs
Up to 22 inputs

Spring 2005 CSE370 - guest lecture 24

22V10 PAL Macro Cell

Sequential logic element + output/input selection

Spring 2005 CSE370 - guest lecture 25

Vending machine example (Moore PLD
mapping)

D0 = reset'(Q0'N + Q0N' + Q1N + Q1D)
D1 = reset'(Q1 + D + Q0N)
OPEN = Q1Q0

DQ

DQ

DQ

Q0

Q1

Open

Com

Seq

Seq

CLK

N

D

Reset

Spring 2005 CSE370 - guest lecture 26

Vending machine (synch. Mealy PLD mapping)

OPEN = reset'(Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D)

OPEN

DQ

DQ

DQ

Q0

Q1

Open

Seq

Seq

Seq

CLK

N

D

Reset

	Example: vending machine
	Example: vending machine (cont’d)
	Example: vending machine (cont’d)
	Example: vending machine (cont’d)
	Example: Moore implementation
	Example: vending machine (cont’d)
	Equivalent Mealy and Moore state diagrams
	Example: Mealy implementation
	Example: Mealy implementation
	Vending machine: Moore to synch. Mealy
	Vending machine: Mealy to synch. Mealy
	Hardware Description Languages and Sequential Logic
	Example: reduce-1-string-by-1
	Verilog FSM - Reduce 1s example
	Moore Verilog FSM (cont’d)
	Mealy Verilog FSM
	Synchronous Mealy Machine
	State assignment
	State assignment strategies
	Current state assignment approaches
	State machines and PLDs
	Implementation using PALs
	22V10 PAL
	22V10 PAL Macro Cell
	Vending machine example (Moore PLD mapping)
	Vending machine (synch. Mealy PLD mapping)

