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Combinational logic

Basic logic
Boolean algebra, proofs by re-writing, proofs by perfect induction
logic functions, truth tables, and switches
NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

Logic realization
two-level logic and canonical forms
incompletely specified functions

Simplification
uniting theorem
grouping of terms in Boolean functions

Alternate representations of Boolean functions
cubes
Karnaugh maps
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X Y 16 possible functions (F0–F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0
X and Y

X Y

X or Y

not Y not X 1

X
Y F

X xor Y

X nor Y
not (X or Y)

X = Y X nand Y
not (X and Y)

Possible logic functions of two variables

There are 16 possible functions of 2 input variables:
in general, there are 2**(2**n) functions of n inputs
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Cost of different logic functions

Different functions are easier or harder to implement
each has a cost associated with the number of switches needed
0 (F0) and 1 (F15): require 0 switches
X (F3) and Y (F5): require 0 switches, output is one of inputs
X’ (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate
X NOR Y (F4) and X NAND Y (F14): require 4 switches
X OR Y (F7) and X AND Y (F1): require 6 switches
X = Y (F9) and X ⊕ Y (F6): require 16 switches

thus, because NOT, NOR, and NAND are the cheapest they are the 
functions we implement the most in practice
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X Y X nand Y
0 0 1
1 1 0

X Y X nor Y
0 0 1
1 1 0

X nand Y ≡ not (  (not X) nor (not Y)  )
X nor Y ≡ not ( (not X) nand (not Y) )

Minimal set of functions

Can we implement all logic functions from NOT, NOR, and NAND?
For example, implementing          X and Y
is the same as implementing   not (X nand Y)

In fact, we can do it with only NOR or only NAND
NOT is just a NAND or a NOR with both inputs tied together

and NAND and NOR are "duals",
that is, its easy to implement one using the other

But lets not move too fast . . . 
lets look at the mathematical foundation of logic
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An algebraic structure

An algebraic structure consists of
a set of elements B
binary operations { + , • }
and a unary operation { ’ }
such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: a + b   is in B a • b   is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a’ = 1 a • a’ = 0
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Boolean algebra

Boolean algebra
B = {0, 1}
variables
+ is logical OR, • is logical AND
’ is logical NOT

All algebraic axioms hold
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X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X’ Y’ X • Y X’ • Y’ ( X • Y ) + ( X’ • Y’ )
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

( X • Y ) + ( X’ • Y’ )     ≡ X = Y

X Y X’ X’ • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is 
true when the variables X 
and Y have the same value
and false, otherwise

Logic functions and Boolean algebra

Any logic function that can be expressed as a truth table can 
be written as an expression in Boolean algebra using the 
operators: ’, +, and •
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Axioms and theorems of Boolean algebra

identity
1.   X + 0 = X 1D.   X • 1 = X

null
2.   X + 1 = 1 2D.   X • 0 = 0

idempotency:
3.   X + X = X 3D.   X • X = X

involution:
4.   (X’)’ = X

complementarity:
5.   X + X’ = 1 5D.   X • X’ = 0

commutativity:
6.   X + Y = Y + X 6D.   X • Y = Y • X

associativity:
7.   (X + Y) + Z = X + (Y + Z) 7D.   (X • Y) • Z = X • (Y • Z)
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Axioms and theorems of Boolean algebra (cont’d)

distributivity:
8.   X • (Y + Z) = (X • Y) + (X • Z) 8D.   X + (Y • Z) = (X + Y) • (X + Z)

uniting:
9.   X • Y + X • Y’ = X 9D.   (X + Y) • (X + Y’) = X

absorption:
10. X + X • Y = X 10D.  X • (X + Y) = X
11. (X + Y’) • Y = X • Y 11D. (X • Y’) + Y = X + Y

factoring:
12. (X + Y) • (X’ + Z) = 12D. X • Y + X’ • Z = 

X • Z + X’ • Y (X + Z) • (X’ + Y)
concensus:

13. (X • Y) + (Y • Z) + (X’ • Z) = 13D. (X + Y) • (Y + Z) • (X’ + Z) =
X • Y + X’ • Z (X + Y) • (X’ + Z)
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Axioms and theorems of Boolean algebra (cont’d)

de Morgan’s:
14. (X + Y + ...)’ = X’ • Y’ • ... 14D. (X • Y • ...)’ = X’ + Y’ + ...

generalized de Morgan’s:
15. f’(X1,X2,...,Xn,0,1,+,•) =  f(X1’,X2’,...,Xn’,1,0,•,+)

establishes relationship between • and +
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Axioms and theorems of Boolean algebra (cont’d)

Duality
a dual of a Boolean expression is derived by replacing 
• by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
any theorem that can be proven is thus also proven for its dual!
a meta-theorem (a theorem about theorems) 

duality:
16. X + Y + ... ⇔ X • Y • ...

generalized duality:
17. f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)

Different than deMorgan’s Law
this is a statement about theorems
this is not a way to manipulate (re-write) expressions
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Proving theorems (rewriting)

Using the laws of Boolean algebra:
e.g., prove the theorem: X • Y + X • Y’ =   X

e.g., prove the theorem: X + X • Y =   X

distributivity (8) X • Y + X • Y’ =   X • (Y + Y’)
complementarity (5) X • (Y + Y’) =   X • (1)
identity (1D) X • (1) =   X 

identity (1D) X  +  X • Y =   X • 1  +  X • Y
distributivity (8) X • 1  +  X • Y =   X • (1 + Y)
identity (2) X • (1 + Y) =   X • (1)
identity (1D) X • (1) =   X 
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Activity

Prove the following using the laws of Boolean algebra:
(X • Y) + (Y • Z) + (X’ • Z) =  X • Y + X’ • Z

(X • Y) + (Y • Z) + (X’ • Z) 

identity (X • Y) + (1) • (Y • Z) + (X’ • Z) 

complementarity (X • Y) + (X’ + X) • (Y • Z) + (X’ • Z) 

distributivity (X • Y) + (X’ • Y • Z) + (X • Y • Z) + (X’ • Z)

commutativity (X • Y) + (X • Y • Z) + (X’ • Y • Z) + (X’ • Z)

factoring (X • Y) • (1 + Z) + (X’ • Z) • (1 + Y)

null (X • Y) • (1) + (X’ • Z) • (1) 

identity (X • Y) + (X’ • Z) 

identity 1.   X + 0 = X 1D.   X • 1 = X
null 2.   X + 1 = 1 2D.   X • 0 = 0
idempotency: 3.   X + X = X 3D.   X • X = X
involution: 4.   (X’)’ = X
complementarity: 5.   X + X’ = 1 5D.   X • X’ = 0
commutativity: 6.   X + Y = Y + X 6D.   X • Y = Y • X
associativity: 7.   (X + Y) + Z = X + (Y + Z) 7D.   (X • Y) • Z = X • (Y • Z)
distributivity: 8.   X • (Y + Z) = (X • Y) + (X • Z) 8D.   X + (Y • Z) = (X + Y) • (X + Z)
uniting: 9.   X • Y + X • Y’ = X 9D.   (X + Y) • (X + Y’) = X
absorption: 10. X + X • Y = X 10D.  X • (X + Y) = X

11. (X + Y’) • Y = X • Y 11D. (X • Y’) + Y = X + Y
factoring: 12. (X + Y) • (X’ + Z) = X • Z + X’ • Y 12D. X • Y + X’ • Z = (X + Z) • (X’ + Y)
concensus: 13. (X • Y) + (Y • Z) + (X’ • Z) = X • Y + X’ • Z 13D. (X + Y) • (Y + Z) • (X’ + Z) = (X + Y) • (X’ + Z)
de Morgan’s: 14. (X + Y + ...)’ = X’ • Y’ • ... 14D. (X • Y • ...)’ = X’ + Y’ + ...
generalized de Morgan’s: 15. f’(X1,X2,...,Xn,0,1,+,•) =  f(X1’,X2’,...,Xn’,1,0,•,+)
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(X + Y)’ = X’ • Y’
NOR is equivalent to AND 
with inputs complemented

(X • Y)’ = X’ + Y’
NAND is equivalent to OR 
with inputs complemented

X Y X’ Y’ (X + Y)’ X’ • Y’
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

X Y X’ Y’ (X • Y)’ X’ + Y’
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Proving theorems (perfect induction)

Using perfect induction (complete truth table):
e.g., de Morgan’s:

1
0
0
0

1
1
1
0

1
0
0
0

1
1
1
0
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A simple example: 1-bit binary adder

Inputs: A, B, Carry-in
Outputs: Sum, Carry-out

A
B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

A A A A A
B B B B B

S S S S S

CinCout
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Apply the theorems to simplify expressions

The theorems of Boolean algebra can simplify Boolean 
expressions

e.g., full adder’s carry-out function (same rules apply to any function)

Cout =  A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
=  A’ B Cin +  A B’ Cin +  A B Cin’  +  A B Cin +  A B Cin
=  A’ B Cin +  A B Cin +  A B’ Cin +  A B Cin’  +  A B Cin
=  (A’ + A) B Cin +  A B’ Cin +  A B Cin’  +  A B Cin
=  (1) B Cin +  A B’ Cin +  A B Cin’  +  A B Cin
=  B Cin +  A B’ Cin + A B Cin’  +  A B Cin +  A B Cin
=  B Cin +  A B’ Cin +  A B Cin +  A B Cin’  +  A B Cin
=  B Cin +  A (B’ + B) Cin +  A B Cin’  +  A B Cin
=  B Cin +  A (1) Cin +  A B Cin’  +  A B Cin
=  B Cin +  A Cin +  A B (Cin’ +  Cin)
=  B Cin +  A Cin +  A B (1)
=  B Cin +  A Cin +  A B adding extra terms 

creates new factoring 
opportunities
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Activity

Fill in the truth-table for a circuit that checks that determines a 
tally of the number of inputs that are 1

Write down Boolean expressions for T4, T2 and T1

X1 X2 X3 X4 T4 T2 T1
0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 1 0
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X1 X2 X3 X4 T4 T2 T1
0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 0
0 1 1 1 0 1 1
1 0 0 0 0 0 1
1 0 0 1 0 1 0
1 0 1 0 0 1 0
1 0 1 1 0 1 1
1 1 0 0 0 1 0
1 1 0 1 0 1 1
1 1 1 0 0 1 1
1 1 1 1 1 0 0

Activity

T1 = X1’X2’X3’X4 + X1’X2’X3X4’
+ X1’X2X3’X4’ + X1’X2X3X4
+ X1X2’X3’X4’ + X1X2’X3X4
+ X1X2X3’X4 + X1X2X3X4’

= (X1 xor X2) xor (X3 xor X4)

T2 =  X1’X2’X3X4 + X1’X2X3’X4
+ X1’X2X3X4’ + X1’X2X3X4
+ X1X2’X3’X4 + X1X2’X3X4’
+ X1’X2X3X4 + X1X2X3’X4’
+ X1X2X3’X4 + X1X2X3X4’

= ???

T3 =  X1X2X3X4
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X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y
0 1
1 0

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X Y

X

X

Y

Y

Z

Z

From Boolean expressions to logic gates

NOT X’ X ~X

AND X • Y XY X ∧ Y

OR X + Y X ∨ Y
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X
Y Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X

Y

X
Y

Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y’ + X’ Y
X or Y but not both 

("inequality", "difference")

X xnor Y = X Y + X’ Y’
X and Y are the same 

("equality", "coincidence")

From Boolean expressions to logic gates (cont’d)

NAND

NOR

XOR
X ⊕ Y

XNOR
X = Y
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T1
T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z

From Boolean expressions to logic gates (cont’d)

More than one way to map expressions to gates

e.g.,  Z = A’ • B’ • (C + D) = (A’ • (B’ • (C + D)))
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time

change in Y takes time to "propagate" through gates

Waveform view of logic functions

Just a sideways truth table
but note how edges don’t line up exactly
it takes time for a gate to switch its output!
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A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Choosing different realizations of a function

two-level realization
(we don’t count NOT gates)

XOR gate (easier to draw 
but costlier to build)

multi-level realization
(gates with fewer inputs)
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Which realization is best?

Reduce number of inputs
literal: input variable (complemented or not)

can approximate cost of logic gate as 2 transitors per literal
why not count inverters?

fewer literals means less transistors
smaller circuits

fewer inputs implies faster gates
gates are smaller and thus also faster

fan-ins (# of gate inputs) are limited in some technologies
Reduce number of gates

fewer gates (and the packages they come in) means smaller circuits
directly influences manufacturing costs
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Which is the best realization?  (cont’d)

Reduce number of levels of gates
fewer level of gates implies reduced signal propagation delays
minimum delay configuration typically requires more gates

wider, less deep circuits

How do we explore tradeoffs between increased circuit delay 
and size?

automated tools to generate different solutions
logic minimization: reduce number of gates and complexity
logic optimization: reduction while trading off against delay
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Are all realizations equivalent?

Under the same input stimuli, the three alternative 
implementations have 
almost the same waveform behavior

delays are different
glitches (hazards) may arise – these could be bad, it depends
variations due to differences in number of gate levels and structure

The three implementations are functionally equivalent
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Implementing Boolean functions

Technology independent
canonical forms
two-level forms
multi-level forms

Technology choices
packages of a few gates
regular logic
two-level programmable logic
multi-level programmable logic
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Canonical forms

Truth table is the unique signature of a Boolean function
The same truth table can have many gate realizations
Canonical forms

standard forms for a Boolean expression
provides a unique algebraic signature



Winter 2005 CSE370 - II - Combinational Logic 29

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F’ = A’B’C’ + A’BC’ + AB’C’

Sum-of-products canonical forms

Also known as disjunctive normal form
Also known as minterm expansion

F =  001      011      101       110       111

+ A’BC + AB’C + ABC’ + ABCA’B’C
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short-hand notation for
minterms of 3 variables

A B C minterms
0 0 0 A’B’C’ m0
0 0 1 A’B’C m1
0 1 0 A’BC’ m2
0 1 1 A’BC m3
1 0 0 AB’C’ m4
1 0 1 AB’C m5
1 1 0 ABC’ m6
1 1 1 ABC m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

=  m1 + m3 + m5 + m6 + m7
=  A’B’C + A’BC + AB’C + ABC’ + ABC

canonical form ≠ minimal form
F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’ 

= (A’B’ + A’B + AB’ + AB)C + ABC’
= ((A’ + A)(B’ + B))C + ABC’
= C + ABC’
= ABC’ + C
= AB + C

Sum-of-products canonical form (cont’d)

Product term (or minterm)
ANDed product of literals – input combination for which output is true
each variable appears exactly once, true or inverted (but not both)



Winter 2005 CSE370 - II - Combinational Logic 31

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =       000              010              100
F =

F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

Product-of-sums canonical form

Also known as conjunctive normal form
Also known as maxterm expansion

(A + B + C) (A + B’ + C) (A’ + B + C)
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A B C maxterms
0 0 0 A+B+C M0
0 0 1 A+B+C’ M1
0 1 0 A+B’+C M2
0 1 1 A+B’+C’ M3
1 0 0 A’+B+C M4
1 0 1 A’+B+C’ M5
1 1 0 A’+B’+C M6
1 1 1 A’+B’+C’ M7

short-hand notation for
maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

=  M0 • M2 • M4
=  (A + B + C) (A + B’ + C) (A’ + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)
(A + B + C) (A’ + B + C)

= (A + C) (B + C)

Product-of-sums canonical form (cont’d)

Sum term (or maxterm)
ORed sum of literals – input combination for which output is false
each variable appears exactly once, true or inverted (but not both)
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S-o-P, P-o-S, and de Morgan’s theorem

Sum-of-products
F’ = A’B’C’ + A’BC’ + AB’C’

Apply de Morgan’s
(F’)’ = (A’B’C’ + A’BC’ + AB’C’)’
F = (A + B + C) (A + B’ + C) (A’ + B + C)

Product-of-sums
F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

Apply de Morgan’s
(F’)’ = ( (A + B + C’)(A + B’ + C’)(A’ + B + C’)(A’ + B’ + C)(A’ + B’ + C’) )’
F = A’B’C + A’BC + AB’C + ABC’ + ABC
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canonical sum-of-products

minimized sum-of-products

canonical product-of-sums

minimized product-of-sums

F1

F2

F3

B

A

C

F4

Four alternative two-level implementations
of F = AB + C
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Waveforms for the four alternatives

Waveforms are essentially identical
except for timing hazards (glitches)
delays almost identical (modeled as a delay per level, not type of 
gate or number of inputs to gate)
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Mapping between canonical forms

Minterm to maxterm conversion
use maxterms whose indices do not appear in minterm expansion
e.g., F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4)

Maxterm to minterm conversion
use minterms whose indices do not appear in maxterm expansion
e.g., F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7) 

Minterm expansion of F to minterm expansion of F’
use minterms whose indices do not appear
e.g., F(A,B,C) = Σm(1,3,5,6,7) F’(A,B,C) = Σm(0,2,4)

Maxterm expansion of F to maxterm expansion of F’
use maxterms whose indices do not appear
e.g., F(A,B,C) = ΠM(0,2,4) F’(A,B,C) = ΠM(1,3,5,6,7)
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A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should 
never be encountered in practice 
– "don’t care" about associated 
output values, can be exploited
in minimization

Incompleteley specified functions

Example: binary coded decimal increment by 1
BCD digits encode the decimal digits 0 – 9 
in the bit patterns 0000 – 1001

don’t care (DC) set of W

on-set of W
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Notation for incompletely specified functions

Don’t cares and canonical forms
so far, only represented on-set
also represent don’t-care-set
need two of the three sets (on-set, off-set, dc-set)

Canonical representations of the BCD increment by 1 function:

Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
Z = Σ [ m(0,2,4,6,8) + d(10,11,12,13,14,15) ]

Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 • D14 • D15
Z = Π [ M(1,3,5,7,9) • D(10,11,12,13,14,15) ]
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Simplification of two-level combinational logic

Finding a minimal sum of products or product of sums realization
exploit don’t care information in the process

Algebraic simplification
not an algorithmic/systematic procedure
how do you know when the minimum realization has been found?

Computer-aided design tools
precise solutions require very long computation times, especially for 
functions with many inputs (> 10)
heuristic methods employed – "educated guesses" to reduce amount of 
computation and yield good if not best solutions

Hand methods still relevant
to understand automatic tools and their strengths and weaknesses
ability to check results (on small examples)

Winter 2005 CSE370 - II - Combinational Logic 40

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A’B’+AB’ = (A’+A)B’ = B’

The uniting theorem

Key tool to simplification: A (B’ + B) = A
Essence of simplification of two-level logic

find two element subsets of the ON-set where only one variable 
changes its value – this single varying variable can be eliminated 
and a single product term used to represent both elements
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1-cube
X

0 1

Boolean cubes

Visual technique for indentifying when the uniting theorem
can be applied
n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W
X

Y
Z

0000

1111

1000

0111
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes) 
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

Mapping truth tables onto Boolean cubes

Uniting theorem combines two "faces" of a cube
into a larger "face"
Example:

A

B

11

00

01

10

F
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A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(A'+A)BCin

AB(Cin'+Cin)

A(B+B')Cin

Cout = BCin+AB+ACin

the on-set is completely covered by 
the combination (OR) of the subcubes
of lower dimensionality - note that “111”
is covered three times

Three variable example

Binary full-adder carry-out logic

A

B C

000

111

101
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F(A,B,C) = Σm(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable       
i.e., 3 dimensions  – 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Higher dimensional cubes

Sub-cubes of higher dimension than 2

A

B C

000

111

101

100

001

010

011
110
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m-dimensional cubes in a n-dimensional 
Boolean space

In a 3-cube (three variables):
a 0-cube, i.e., a single node, yields a term in 3 literals
a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

In general,
an m-subcube within an n-cube (m < n) yields a term
with n – m literals
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

Karnaugh maps

Flat map of Boolean cube
wrap–around at edges
hard to draw and visualize for more than 4 dimensions
virtually impossible for more than 6 dimensions

Alternative to truth-tables to help visualize adjacencies
guide to applying the uniting theorem
on-set elements with only one variable changing value are 
adjacent unlike the situation in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1
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Karnaugh maps (cont’d)

Numbering scheme based on Gray–code
e.g., 00, 01, 11, 10
only a single bit changes in code for adjacent map cells

0 2

1 3

00 01
AB

C
0

1
6 4

7 5

11 10

C

B

A

0 2

1 3

6 4

7 5
C

B

A

0 4

1 5

12 8

13 9 D

A

3 7

2 6

15 11

14 10
C

B 13 = 1101= ABC’D

Winter 2005 CSE370 - II - Combinational Logic 48

Adjacencies in Karnaugh maps

Wrap from first to last column
Wrap top row to bottom row

000 010

001 011

110 100

111 101C

B

A

A

B C

000

111

101

100

001

010

011
110
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obtain the
complement
of the function 
by covering 0s
with subcubes

Karnaugh map examples

F =

Cout =

f(A,B,C) = Σm(0,4,5,7) 

0 0

0 1

1 0

1 1Cin

B

A

1 1

0 0B

A

1 0

0 0

0 1

1 1C

B

A

B’

AB

AC

+ ACin + BCin

+ B’C’ + AB’
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F(A,B,C) = Σm(0,4,5,7)

F'(A,B,C) = Σ m(1,2,3,6)
F' simply replace 1's with 0's and vice versa

G(A,B,C) = 

More Karnaugh map examples

0 0

0 0

1 1

1 1C

B

A

1 0

0 0

0 1

1 1C

B

A

0 1

1 1

1 0

0 0C

B

A

A

= AC + B’C’

= BC’ + A’C
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C + B’D’

find the smallest number of the largest possible 
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

Karnaugh map: 4-variable example

F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F =

D

A

B

A
B

C
D

0000

1111

1000

0111
1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

+ A’BD
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+ B’C’D

Karnaugh maps: don’t cares

f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
without don't cares

f = 

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A’D
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Karnaugh maps: don’t cares (cont’d)

f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
f = A'D + B'C'D without don't cares
f = with don't cares

don't cares can be treated as
1s or 0s

depending on which is more 
advantageous

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A'D

by using don't care as a "1"
a 2-cube can be formed 
rather than a 1-cube to cover
this node

+ C'D
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Activity

Minimize the function F = Σ m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

F = AC’ +
A’C +
BC +
AB +
A’B’D’ +
B’C’D’

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

F = BC + A’B’D’ + B’C’D’

F = A’C + AB + B’C’D’
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Combinational logic summary

Logic functions, truth tables, and switches
NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

Axioms and theorems of Boolean algebra
proofs by re-writing and perfect induction

Gate logic
networks of Boolean functions and their time behavior

Canonical forms
two-level and incompletely specified functions

Simplification
a start at understanding two-level simplification

Later
automation of simplification
multi-level logic
time behavior
hardware description languages
design case studies


