
Winter 2005 CSE370 - II - Combinational Logic 1

Combinational logic

Basic logic
Boolean algebra, proofs by re-writing, proofs by perfect induction
logic functions, truth tables, and switches
NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

Logic realization
two-level logic and canonical forms
incompletely specified functions

Simplification
uniting theorem
grouping of terms in Boolean functions

Alternate representations of Boolean functions
cubes
Karnaugh maps

Winter 2005 CSE370 - II - Combinational Logic 2

X Y 16 possible functions (F0–F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0
X and Y

X Y

X or Y

not Y not X 1

X
Y F

X xor Y

X nor Y
not (X or Y)

X = Y X nand Y
not (X and Y)

Possible logic functions of two variables

There are 16 possible functions of 2 input variables:
in general, there are 2**(2**n) functions of n inputs

Winter 2005 CSE370 - II - Combinational Logic 3

Cost of different logic functions

Different functions are easier or harder to implement
each has a cost associated with the number of switches needed
0 (F0) and 1 (F15): require 0 switches
X (F3) and Y (F5): require 0 switches, output is one of inputs
X’ (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate
X NOR Y (F4) and X NAND Y (F14): require 4 switches
X OR Y (F7) and X AND Y (F1): require 6 switches
X = Y (F9) and X ⊕ Y (F6): require 16 switches

thus, because NOT, NOR, and NAND are the cheapest they are the
functions we implement the most in practice

Winter 2005 CSE370 - II - Combinational Logic 4

X Y X nand Y
0 0 1
1 1 0

X Y X nor Y
0 0 1
1 1 0

X nand Y ≡ not ((not X) nor (not Y))
X nor Y ≡ not ((not X) nand (not Y))

Minimal set of functions

Can we implement all logic functions from NOT, NOR, and NAND?
For example, implementing X and Y
is the same as implementing not (X nand Y)

In fact, we can do it with only NOR or only NAND
NOT is just a NAND or a NOR with both inputs tied together

and NAND and NOR are "duals",
that is, its easy to implement one using the other

But lets not move too fast . . .
lets look at the mathematical foundation of logic

Winter 2005 CSE370 - II - Combinational Logic 5

An algebraic structure

An algebraic structure consists of
a set of elements B
binary operations { + , • }
and a unary operation { ’ }
such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: a + b is in B a • b is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a’ = 1 a • a’ = 0

Winter 2005 CSE370 - II - Combinational Logic 6

Boolean algebra

Boolean algebra
B = {0, 1}
variables
+ is logical OR, • is logical AND
’ is logical NOT

All algebraic axioms hold

Winter 2005 CSE370 - II - Combinational Logic 7

X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X’ Y’ X • Y X’ • Y’ (X • Y) + (X’ • Y’)
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

(X • Y) + (X’ • Y’) ≡ X = Y

X Y X’ X’ • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is
true when the variables X
and Y have the same value
and false, otherwise

Logic functions and Boolean algebra

Any logic function that can be expressed as a truth table can
be written as an expression in Boolean algebra using the
operators: ’, +, and •

Winter 2005 CSE370 - II - Combinational Logic 8

Axioms and theorems of Boolean algebra

identity
1. X + 0 = X 1D. X • 1 = X

null
2. X + 1 = 1 2D. X • 0 = 0

idempotency:
3. X + X = X 3D. X • X = X

involution:
4. (X’)’ = X

complementarity:
5. X + X’ = 1 5D. X • X’ = 0

commutativity:
6. X + Y = Y + X 6D. X • Y = Y • X

associativity:
7. (X + Y) + Z = X + (Y + Z) 7D. (X • Y) • Z = X • (Y • Z)

Winter 2005 CSE370 - II - Combinational Logic 9

Axioms and theorems of Boolean algebra (cont’d)

distributivity:
8. X • (Y + Z) = (X • Y) + (X • Z) 8D. X + (Y • Z) = (X + Y) • (X + Z)

uniting:
9. X • Y + X • Y’ = X 9D. (X + Y) • (X + Y’) = X

absorption:
10. X + X • Y = X 10D. X • (X + Y) = X
11. (X + Y’) • Y = X • Y 11D. (X • Y’) + Y = X + Y

factoring:
12. (X + Y) • (X’ + Z) = 12D. X • Y + X’ • Z =

X • Z + X’ • Y (X + Z) • (X’ + Y)
concensus:

13. (X • Y) + (Y • Z) + (X’ • Z) = 13D. (X + Y) • (Y + Z) • (X’ + Z) =
X • Y + X’ • Z (X + Y) • (X’ + Z)

Winter 2005 CSE370 - II - Combinational Logic 10

Axioms and theorems of Boolean algebra (cont’d)

de Morgan’s:
14. (X + Y + ...)’ = X’ • Y’ • ... 14D. (X • Y • ...)’ = X’ + Y’ + ...

generalized de Morgan’s:
15. f’(X1,X2,...,Xn,0,1,+,•) = f(X1’,X2’,...,Xn’,1,0,•,+)

establishes relationship between • and +

Winter 2005 CSE370 - II - Combinational Logic 11

Axioms and theorems of Boolean algebra (cont’d)

Duality
a dual of a Boolean expression is derived by replacing
• by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
any theorem that can be proven is thus also proven for its dual!
a meta-theorem (a theorem about theorems)

duality:
16. X + Y + ... ⇔ X • Y • ...

generalized duality:
17. f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)

Different than deMorgan’s Law
this is a statement about theorems
this is not a way to manipulate (re-write) expressions

Winter 2005 CSE370 - II - Combinational Logic 12

Proving theorems (rewriting)

Using the laws of Boolean algebra:
e.g., prove the theorem: X • Y + X • Y’ = X

e.g., prove the theorem: X + X • Y = X

distributivity (8) X • Y + X • Y’ = X • (Y + Y’)
complementarity (5) X • (Y + Y’) = X • (1)
identity (1D) X • (1) = X

identity (1D) X + X • Y = X • 1 + X • Y
distributivity (8) X • 1 + X • Y = X • (1 + Y)
identity (2) X • (1 + Y) = X • (1)
identity (1D) X • (1) = X

Winter 2005 CSE370 - II - Combinational Logic 13

Activity

Prove the following using the laws of Boolean algebra:
(X • Y) + (Y • Z) + (X’ • Z) = X • Y + X’ • Z

(X • Y) + (Y • Z) + (X’ • Z)

identity (X • Y) + (1) • (Y • Z) + (X’ • Z)

complementarity (X • Y) + (X’ + X) • (Y • Z) + (X’ • Z)

distributivity (X • Y) + (X’ • Y • Z) + (X • Y • Z) + (X’ • Z)

commutativity (X • Y) + (X • Y • Z) + (X’ • Y • Z) + (X’ • Z)

factoring (X • Y) • (1 + Z) + (X’ • Z) • (1 + Y)

null (X • Y) • (1) + (X’ • Z) • (1)

identity (X • Y) + (X’ • Z)

identity 1. X + 0 = X 1D. X • 1 = X
null 2. X + 1 = 1 2D. X • 0 = 0
idempotency: 3. X + X = X 3D. X • X = X
involution: 4. (X’)’ = X
complementarity: 5. X + X’ = 1 5D. X • X’ = 0
commutativity: 6. X + Y = Y + X 6D. X • Y = Y • X
associativity: 7. (X + Y) + Z = X + (Y + Z) 7D. (X • Y) • Z = X • (Y • Z)
distributivity: 8. X • (Y + Z) = (X • Y) + (X • Z) 8D. X + (Y • Z) = (X + Y) • (X + Z)
uniting: 9. X • Y + X • Y’ = X 9D. (X + Y) • (X + Y’) = X
absorption: 10. X + X • Y = X 10D. X • (X + Y) = X

11. (X + Y’) • Y = X • Y 11D. (X • Y’) + Y = X + Y
factoring: 12. (X + Y) • (X’ + Z) = X • Z + X’ • Y 12D. X • Y + X’ • Z = (X + Z) • (X’ + Y)
concensus: 13. (X • Y) + (Y • Z) + (X’ • Z) = X • Y + X’ • Z 13D. (X + Y) • (Y + Z) • (X’ + Z) = (X + Y) • (X’ + Z)
de Morgan’s: 14. (X + Y + ...)’ = X’ • Y’ • ... 14D. (X • Y • ...)’ = X’ + Y’ + ...
generalized de Morgan’s: 15. f’(X1,X2,...,Xn,0,1,+,•) = f(X1’,X2’,...,Xn’,1,0,•,+)

Winter 2005 CSE370 - II - Combinational Logic 14

(X + Y)’ = X’ • Y’
NOR is equivalent to AND
with inputs complemented

(X • Y)’ = X’ + Y’
NAND is equivalent to OR
with inputs complemented

X Y X’ Y’ (X + Y)’ X’ • Y’
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

X Y X’ Y’ (X • Y)’ X’ + Y’
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Proving theorems (perfect induction)

Using perfect induction (complete truth table):
e.g., de Morgan’s:

1
0
0
0

1
1
1
0

1
0
0
0

1
1
1
0

Winter 2005 CSE370 - II - Combinational Logic 15

A simple example: 1-bit binary adder

Inputs: A, B, Carry-in
Outputs: Sum, Carry-out

A
B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

A A A A A
B B B B B

S S S S S

CinCout

Winter 2005 CSE370 - II - Combinational Logic 16

Apply the theorems to simplify expressions

The theorems of Boolean algebra can simplify Boolean
expressions

e.g., full adder’s carry-out function (same rules apply to any function)

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
= A’ B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin
= A’ B Cin + A B Cin + A B’ Cin + A B Cin’ + A B Cin
= (A’ + A) B Cin + A B’ Cin + A B Cin’ + A B Cin
= (1) B Cin + A B’ Cin + A B Cin’ + A B Cin
= B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin
= B Cin + A B’ Cin + A B Cin + A B Cin’ + A B Cin
= B Cin + A (B’ + B) Cin + A B Cin’ + A B Cin
= B Cin + A (1) Cin + A B Cin’ + A B Cin
= B Cin + A Cin + A B (Cin’ + Cin)
= B Cin + A Cin + A B (1)
= B Cin + A Cin + A B adding extra terms

creates new factoring
opportunities

Winter 2005 CSE370 - II - Combinational Logic 17

Activity

Fill in the truth-table for a circuit that checks that determines a
tally of the number of inputs that are 1

Write down Boolean expressions for T4, T2 and T1

X1 X2 X3 X4 T4 T2 T1
0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 1 0

Winter 2005 CSE370 - II - Combinational Logic 18

X1 X2 X3 X4 T4 T2 T1
0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 0
0 1 1 1 0 1 1
1 0 0 0 0 0 1
1 0 0 1 0 1 0
1 0 1 0 0 1 0
1 0 1 1 0 1 1
1 1 0 0 0 1 0
1 1 0 1 0 1 1
1 1 1 0 0 1 1
1 1 1 1 1 0 0

Activity

T1 = X1’X2’X3’X4 + X1’X2’X3X4’
+ X1’X2X3’X4’ + X1’X2X3X4
+ X1X2’X3’X4’ + X1X2’X3X4
+ X1X2X3’X4 + X1X2X3X4’

= (X1 xor X2) xor (X3 xor X4)

T2 = X1’X2’X3X4 + X1’X2X3’X4
+ X1’X2X3X4’ + X1’X2X3X4
+ X1X2’X3’X4 + X1X2’X3X4’
+ X1’X2X3X4 + X1X2X3’X4’
+ X1X2X3’X4 + X1X2X3X4’

= ???

T3 = X1X2X3X4

Winter 2005 CSE370 - II - Combinational Logic 19

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y
0 1
1 0

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X Y

X

X

Y

Y

Z

Z

From Boolean expressions to logic gates

NOT X’ X ~X

AND X • Y XY X ∧ Y

OR X + Y X ∨ Y

Winter 2005 CSE370 - II - Combinational Logic 20

X
Y Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X

Y

X
Y

Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y’ + X’ Y
X or Y but not both

("inequality", "difference")

X xnor Y = X Y + X’ Y’
X and Y are the same

("equality", "coincidence")

From Boolean expressions to logic gates (cont’d)

NAND

NOR

XOR
X ⊕ Y

XNOR
X = Y

Winter 2005 CSE370 - II - Combinational Logic 21

T1
T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z

From Boolean expressions to logic gates (cont’d)

More than one way to map expressions to gates

e.g., Z = A’ • B’ • (C + D) = (A’ • (B’ • (C + D)))

Winter 2005 CSE370 - II - Combinational Logic 22

time

change in Y takes time to "propagate" through gates

Waveform view of logic functions

Just a sideways truth table
but note how edges don’t line up exactly
it takes time for a gate to switch its output!

Winter 2005 CSE370 - II - Combinational Logic 23

A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Choosing different realizations of a function

two-level realization
(we don’t count NOT gates)

XOR gate (easier to draw
but costlier to build)

multi-level realization
(gates with fewer inputs)

Winter 2005 CSE370 - II - Combinational Logic 24

Which realization is best?

Reduce number of inputs
literal: input variable (complemented or not)

can approximate cost of logic gate as 2 transitors per literal
why not count inverters?

fewer literals means less transistors
smaller circuits

fewer inputs implies faster gates
gates are smaller and thus also faster

fan-ins (# of gate inputs) are limited in some technologies
Reduce number of gates

fewer gates (and the packages they come in) means smaller circuits
directly influences manufacturing costs

Winter 2005 CSE370 - II - Combinational Logic 25

Which is the best realization? (cont’d)

Reduce number of levels of gates
fewer level of gates implies reduced signal propagation delays
minimum delay configuration typically requires more gates

wider, less deep circuits

How do we explore tradeoffs between increased circuit delay
and size?

automated tools to generate different solutions
logic minimization: reduce number of gates and complexity
logic optimization: reduction while trading off against delay

Winter 2005 CSE370 - II - Combinational Logic 26

Are all realizations equivalent?

Under the same input stimuli, the three alternative
implementations have
almost the same waveform behavior

delays are different
glitches (hazards) may arise – these could be bad, it depends
variations due to differences in number of gate levels and structure

The three implementations are functionally equivalent

Winter 2005 CSE370 - II - Combinational Logic 27

Implementing Boolean functions

Technology independent
canonical forms
two-level forms
multi-level forms

Technology choices
packages of a few gates
regular logic
two-level programmable logic
multi-level programmable logic

Winter 2005 CSE370 - II - Combinational Logic 28

Canonical forms

Truth table is the unique signature of a Boolean function
The same truth table can have many gate realizations
Canonical forms

standard forms for a Boolean expression
provides a unique algebraic signature

Winter 2005 CSE370 - II - Combinational Logic 29

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F’ = A’B’C’ + A’BC’ + AB’C’

Sum-of-products canonical forms

Also known as disjunctive normal form
Also known as minterm expansion

F = 001 011 101 110 111

+ A’BC + AB’C + ABC’ + ABCA’B’C

Winter 2005 CSE370 - II - Combinational Logic 30

short-hand notation for
minterms of 3 variables

A B C minterms
0 0 0 A’B’C’ m0
0 0 1 A’B’C m1
0 1 0 A’BC’ m2
0 1 1 A’BC m3
1 0 0 AB’C’ m4
1 0 1 AB’C m5
1 1 0 ABC’ m6
1 1 1 ABC m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

= m1 + m3 + m5 + m6 + m7
= A’B’C + A’BC + AB’C + ABC’ + ABC

canonical form ≠ minimal form
F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’

= (A’B’ + A’B + AB’ + AB)C + ABC’
= ((A’ + A)(B’ + B))C + ABC’
= C + ABC’
= ABC’ + C
= AB + C

Sum-of-products canonical form (cont’d)

Product term (or minterm)
ANDed product of literals – input combination for which output is true
each variable appears exactly once, true or inverted (but not both)

Winter 2005 CSE370 - II - Combinational Logic 31

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F = 000 010 100
F =

F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

Product-of-sums canonical form

Also known as conjunctive normal form
Also known as maxterm expansion

(A + B + C) (A + B’ + C) (A’ + B + C)

Winter 2005 CSE370 - II - Combinational Logic 32

A B C maxterms
0 0 0 A+B+C M0
0 0 1 A+B+C’ M1
0 1 0 A+B’+C M2
0 1 1 A+B’+C’ M3
1 0 0 A’+B+C M4
1 0 1 A’+B+C’ M5
1 1 0 A’+B’+C M6
1 1 1 A’+B’+C’ M7

short-hand notation for
maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

= M0 • M2 • M4
= (A + B + C) (A + B’ + C) (A’ + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)
(A + B + C) (A’ + B + C)

= (A + C) (B + C)

Product-of-sums canonical form (cont’d)

Sum term (or maxterm)
ORed sum of literals – input combination for which output is false
each variable appears exactly once, true or inverted (but not both)

Winter 2005 CSE370 - II - Combinational Logic 33

S-o-P, P-o-S, and de Morgan’s theorem

Sum-of-products
F’ = A’B’C’ + A’BC’ + AB’C’

Apply de Morgan’s
(F’)’ = (A’B’C’ + A’BC’ + AB’C’)’
F = (A + B + C) (A + B’ + C) (A’ + B + C)

Product-of-sums
F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

Apply de Morgan’s
(F’)’ = ((A + B + C’)(A + B’ + C’)(A’ + B + C’)(A’ + B’ + C)(A’ + B’ + C’))’
F = A’B’C + A’BC + AB’C + ABC’ + ABC

Winter 2005 CSE370 - II - Combinational Logic 34

canonical sum-of-products

minimized sum-of-products

canonical product-of-sums

minimized product-of-sums

F1

F2

F3

B

A

C

F4

Four alternative two-level implementations
of F = AB + C

Winter 2005 CSE370 - II - Combinational Logic 35

Waveforms for the four alternatives

Waveforms are essentially identical
except for timing hazards (glitches)
delays almost identical (modeled as a delay per level, not type of
gate or number of inputs to gate)

Winter 2005 CSE370 - II - Combinational Logic 36

Mapping between canonical forms

Minterm to maxterm conversion
use maxterms whose indices do not appear in minterm expansion
e.g., F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4)

Maxterm to minterm conversion
use minterms whose indices do not appear in maxterm expansion
e.g., F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7)

Minterm expansion of F to minterm expansion of F’
use minterms whose indices do not appear
e.g., F(A,B,C) = Σm(1,3,5,6,7) F’(A,B,C) = Σm(0,2,4)

Maxterm expansion of F to maxterm expansion of F’
use maxterms whose indices do not appear
e.g., F(A,B,C) = ΠM(0,2,4) F’(A,B,C) = ΠM(1,3,5,6,7)

Winter 2005 CSE370 - II - Combinational Logic 37

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should
never be encountered in practice
– "don’t care" about associated
output values, can be exploited
in minimization

Incompleteley specified functions

Example: binary coded decimal increment by 1
BCD digits encode the decimal digits 0 – 9
in the bit patterns 0000 – 1001

don’t care (DC) set of W

on-set of W

Winter 2005 CSE370 - II - Combinational Logic 38

Notation for incompletely specified functions

Don’t cares and canonical forms
so far, only represented on-set
also represent don’t-care-set
need two of the three sets (on-set, off-set, dc-set)

Canonical representations of the BCD increment by 1 function:

Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
Z = Σ [m(0,2,4,6,8) + d(10,11,12,13,14,15)]

Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 • D14 • D15
Z = Π [M(1,3,5,7,9) • D(10,11,12,13,14,15)]

Winter 2005 CSE370 - II - Combinational Logic 39

Simplification of two-level combinational logic

Finding a minimal sum of products or product of sums realization
exploit don’t care information in the process

Algebraic simplification
not an algorithmic/systematic procedure
how do you know when the minimum realization has been found?

Computer-aided design tools
precise solutions require very long computation times, especially for
functions with many inputs (> 10)
heuristic methods employed – "educated guesses" to reduce amount of
computation and yield good if not best solutions

Hand methods still relevant
to understand automatic tools and their strengths and weaknesses
ability to check results (on small examples)

Winter 2005 CSE370 - II - Combinational Logic 40

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A’B’+AB’ = (A’+A)B’ = B’

The uniting theorem

Key tool to simplification: A (B’ + B) = A
Essence of simplification of two-level logic

find two element subsets of the ON-set where only one variable
changes its value – this single varying variable can be eliminated
and a single product term used to represent both elements

Winter 2005 CSE370 - II - Combinational Logic 41

1-cube
X

0 1

Boolean cubes

Visual technique for indentifying when the uniting theorem
can be applied
n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W
X

Y
Z

0000

1111

1000

0111

Winter 2005 CSE370 - II - Combinational Logic 42

A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes)
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

Mapping truth tables onto Boolean cubes

Uniting theorem combines two "faces" of a cube
into a larger "face"
Example:

A

B

11

00

01

10

F

Winter 2005 CSE370 - II - Combinational Logic 43

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(A'+A)BCin

AB(Cin'+Cin)

A(B+B')Cin

Cout = BCin+AB+ACin

the on-set is completely covered by
the combination (OR) of the subcubes
of lower dimensionality - note that “111”
is covered three times

Three variable example

Binary full-adder carry-out logic

A

B C

000

111

101

Winter 2005 CSE370 - II - Combinational Logic 44

F(A,B,C) = Σm(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable
i.e., 3 dimensions – 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Higher dimensional cubes

Sub-cubes of higher dimension than 2

A

B C

000

111

101

100

001

010

011
110

Winter 2005 CSE370 - II - Combinational Logic 45

m-dimensional cubes in a n-dimensional
Boolean space

In a 3-cube (three variables):
a 0-cube, i.e., a single node, yields a term in 3 literals
a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

In general,
an m-subcube within an n-cube (m < n) yields a term
with n – m literals

Winter 2005 CSE370 - II - Combinational Logic 46

A B F

0 0 1

0 1 0

1 0 1

1 1 0

Karnaugh maps

Flat map of Boolean cube
wrap–around at edges
hard to draw and visualize for more than 4 dimensions
virtually impossible for more than 6 dimensions

Alternative to truth-tables to help visualize adjacencies
guide to applying the uniting theorem
on-set elements with only one variable changing value are
adjacent unlike the situation in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1

Winter 2005 CSE370 - II - Combinational Logic 47

Karnaugh maps (cont’d)

Numbering scheme based on Gray–code
e.g., 00, 01, 11, 10
only a single bit changes in code for adjacent map cells

0 2

1 3

00 01
AB

C
0

1
6 4

7 5

11 10

C

B

A

0 2

1 3

6 4

7 5
C

B

A

0 4

1 5

12 8

13 9 D

A

3 7

2 6

15 11

14 10
C

B 13 = 1101= ABC’D

Winter 2005 CSE370 - II - Combinational Logic 48

Adjacencies in Karnaugh maps

Wrap from first to last column
Wrap top row to bottom row

000 010

001 011

110 100

111 101C

B

A

A

B C

000

111

101

100

001

010

011
110

Winter 2005 CSE370 - II - Combinational Logic 49

obtain the
complement
of the function
by covering 0s
with subcubes

Karnaugh map examples

F =

Cout =

f(A,B,C) = Σm(0,4,5,7)

0 0

0 1

1 0

1 1Cin

B

A

1 1

0 0B

A

1 0

0 0

0 1

1 1C

B

A

B’

AB

AC

+ ACin + BCin

+ B’C’ + AB’

Winter 2005 CSE370 - II - Combinational Logic 50

F(A,B,C) = Σm(0,4,5,7)

F'(A,B,C) = Σ m(1,2,3,6)
F' simply replace 1's with 0's and vice versa

G(A,B,C) =

More Karnaugh map examples

0 0

0 0

1 1

1 1C

B

A

1 0

0 0

0 1

1 1C

B

A

0 1

1 1

1 0

0 0C

B

A

A

= AC + B’C’

= BC’ + A’C

Winter 2005 CSE370 - II - Combinational Logic 51

C + B’D’

find the smallest number of the largest possible
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

Karnaugh map: 4-variable example

F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F =

D

A

B

A
B

C
D

0000

1111

1000

0111
1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

+ A’BD

Winter 2005 CSE370 - II - Combinational Logic 52

+ B’C’D

Karnaugh maps: don’t cares

f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
without don't cares

f =

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A’D

Winter 2005 CSE370 - II - Combinational Logic 53

Karnaugh maps: don’t cares (cont’d)

f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
f = A'D + B'C'D without don't cares
f = with don't cares

don't cares can be treated as
1s or 0s

depending on which is more
advantageous

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A'D

by using don't care as a "1"
a 2-cube can be formed
rather than a 1-cube to cover
this node

+ C'D

Winter 2005 CSE370 - II - Combinational Logic 54

Activity

Minimize the function F = Σ m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

F = AC’ +
A’C +
BC +
AB +
A’B’D’ +
B’C’D’

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

F = BC + A’B’D’ + B’C’D’

F = A’C + AB + B’C’D’

Winter 2005 CSE370 - II - Combinational Logic 55

Combinational logic summary

Logic functions, truth tables, and switches
NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

Axioms and theorems of Boolean algebra
proofs by re-writing and perfect induction

Gate logic
networks of Boolean functions and their time behavior

Canonical forms
two-level and incompletely specified functions

Simplification
a start at understanding two-level simplification

Later
automation of simplification
multi-level logic
time behavior
hardware description languages
design case studies

