
Autumn 2006 CSE370 - I - Introduction 1

CSE370: Introduction to Digital Design

Course staff
Gaetano Borriello, Brian DeRenzi, Firat Kiyak

Course web
www.cs.washington.edu/370/
Make sure to subscribe to class mailing list (cse370@cs)

Course text
Contemporary Logic Design, 2e, Katz/Borriello, Prentice-Hall

Today’s agenda
Class administration and overview of course web
Course objectives and approach
Classroom Presenter

Autumn 2006 CSE370 - I - Introduction 2

Why are you here?

Obvious reasons
this course is part of the CS/CompE requirements
it is the implementation basis for all modern computing devices

building large things from small components
computers = transistors + wires - it’s all in how they are interconnected

provide a model of how a computer works

More important reasons
the inherent parallelism in hardware is your first exposure to
parallel computation
it offers an interesting counterpoint to programming and is
therefore useful in furthering our understanding of computation

Autumn 2006 CSE370 - I - Introduction 3

What will we learn in CSE370?

The language of logic design
Boolean algebra, logic minimization, state, timing, CAD tools

The concept of state in digital systems
analogous to variables and program counters in software systems

How to specify/simulate/compile/realize our designs
hardware description languages
tools to simulate the workings of our designs
logic compilers to synthesize the hardware blocks of our designs
mapping onto programmable hardware

Contrast with programming
sequential and parallel implementations
specify algorithm as well as computing/storage resources it will use

Autumn 2006 CSE370 - I - Introduction 4

Applications of logic design

Conventional computer design
CPUs, busses, peripherals

Networking and communications
phones, modems, routers

Embedded products
in cars, toys, appliances, entertainment devices

Scientific equipment
testing, sensing, reporting

The world of computing is much much bigger than just PCs!

Autumn 2006 CSE370 - I - Introduction 5

What is logic design?
What is design?

given a specification of a problem, come up with a way of solving
it choosing appropriately from a collection of available
components
while meeting some criteria for size, cost, power, beauty,
elegance, etc.

What is logic design?
determining the collection of digital logic components to perform
a specified control and/or data manipulation and/or
communication function and the interconnections between them
which logic components to choose? – there are many
implementation technologies (e.g., off-the-shelf fixed-function
components, programmable devices, transistors on a chip, etc.)
the design may need to be optimized and/or transformed to meet
design constraints

Autumn 2006 CSE370 - I - Introduction 6

What is digital hardware?

Collection of devices that sense and/or control wires that carry a
digital value (i.e., a physical quantity that can be interpreted
as a logical “0” or “1”)

example: digital logic where voltage < 0.8v is a “0” and > 2.0v is a “1”
example: pair of transmission wires where a “0” or “1” is distinguished
by which wire has a higher voltage (differential)
example: orientation of magnetization signifies a “0” or a “1”

Primitive digital hardware devices
logic computation devices (sense and drive)

are two wires both “1” - make another be “1” (AND)
is at least one of two wires “1” - make another be “1” (OR)
is a wire “1” - then make another be “0” (NOT)

memory devices (store)
store a value
recall a previously stored value

Autumn 2006 CSE370 - I - Introduction 7

What is happening now in digital design?
Important trends in how industry does hardware design

larger and larger designs
shorter and shorter time to market
cheaper and cheaper products
design time often dominates cost

Scale
pervasive use of computer-aided design tools over hand methods
multiple levels of design representation

Time
emphasis on abstract design representations
programmable rather than fixed function components
automatic synthesis techniques
importance of sound design methodologies

Cost
higher levels of integration
use of simulation to debug designs
simulate and verify before you build

Autumn 2006 CSE370 - I - Introduction 8

New ability: to accomplish the logic design task with the aid of computer-aided
design tools and map a problem description into an implementation with
programmable logic devices after validation via simulation and understanding
of the advantages/disadvantages as compared to a software implementation

CSE 370: concepts/skills/abilities

Understanding the basics of logic design (concepts)
Understanding sound design methodologies (concepts)
Modern specification methods (concepts)
Familiarity with a full set of CAD tools (skills)
Realize digital designs in an implementation technology (skills)
Appreciation for the differences and similarities (abilities)
in hardware and software design

Autumn 2006 CSE370 - I - Introduction 9

scope of CSE 370

Representation of digital designs

Physical devices (transistors)
Switches
Truth tables
Boolean algebra
Gates
Waveforms
Finite-state behavior
Register-transfer behavior
Processor architecture
Concurrent abstract specifications

Autumn 2006 CSE370 - I - Introduction 10

Computation: abstract vs. implementation

Up to now, computation has been a mental exercise (paper,
programs)
This class is about physically implementing computation using
physical devices that use voltages to represent logical values
Basic units of computation are:

representation: "0", “1" on a wire
set of wires (e.g., for binary ints)

assignment: x = y
data operations: x + y – 5
control:

sequential statements: A; B; C
conditionals: if x == 1 then y
loops: for (i = 1 ; i == 10, i++)
procedures: A; proc(...); B;

We will study how each of these are implemented in hardware
and composed into computational structures

Autumn 2006 CSE370 - I - Introduction 11

Class components

Combinational logic
outputt = F(inputt)

Sequential logic
outputt = F(outputt-1, inputt)

output dependent on history
concept of a time step (clock)

Basic computer architecture
how a CPU executes instructions

Autumn 2006 CSE370 - I - Introduction 12

easy to implement
with CMOS transistors

Combinational logic

Common combinational logic elements are called logic gates

Buffer, NOT

AND, NAND

OR, NOR

Autumn 2006 CSE370 - I - Introduction 13

Sequential logic

Common sequential logic elements are called flip-flops
Flip-flops only change their output after a clocking event

Autumn 2006 CSE370 - I - Introduction 14

Mixing combinational and sequential logic

What does this very simple circuit do?

Autumn 2006 CSE370 - I - Introduction 15

Combinational or sequential?

Circle combinational in red, sequential in blue
assignment: x = y;
data operations: x + y – 5
sequential statements: A; B; C;
conditionals: if x == 1 then y;
loops: for (i = 1 ; i == 10, i++) {…}
procedures/methods: A; proc(...); B;

Autumn 2006 CSE370 - I - Introduction 16

A combinational logic example

Calendar subsystem: number of days in a month (to control
watch display)

used in controlling the display of a wrist-watch LCD screen

inputs: month, leap year flag
outputs: number of days

Autumn 2006 CSE370 - I - Introduction 17

leapmonth

d28 d29 d30 d31

month leap d28 d29 d30 d31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Implementation as a
combinational digital system

Encoding:
how many bits for each input/output?
binary number for month
four wires for 28, 29, 30, and 31

Behavior:
combinational
truth table
specification

Autumn 2006 CSE370 - I - Introduction 18

symbol
for and

symbol
for or

symbol
for not

Combinational example (cont’d)

Truth-table to logic to switches to gates
d28 = 1 when month=0010 and leap=0
d28 = m8'•m4'•m2•m1'•leap'

d31 = 1 when month=0001 or month=0011 or ... month=1100
d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + ...
(m8•m4•m2'•m1')
d31 = can we simplify more? month leap d28 d29 d30 d31

0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
...
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –
0000 – – – – –

Autumn 2006 CSE370 - I - Introduction 19

Combinational example (cont’d)

d28 = m8'•m4'•m2•m1'•leap’
d29 = m8'•m4'•m2•m1'•leap
d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') +

(m8•m4'•m2'•m1) + (m8•m4'•m2•m1)
= (m8'•m4•m1') + (m8•m4'•m1)

d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) +
(m8'•m4•m2'•m1) + (m8'•m4•m2•m1) +
(m8•m4'•m2'•m1') + (m8•m4'•m2•m1') +
(m8•m4•m2'•m1')

Autumn 2006 CSE370 - I - Introduction 20

Activity

How much can we simplify d31?

month d31
0000 –
0001 1
0010 0
0011 1
0100 0
0101 1
0110 0
0111 1
1000 1
1001 0
1010 1
1011 0
1100 1
1101 –
1110 –
1111 –

Autumn 2006 CSE370 - I - Introduction 21

Realization of combinational logic

d28 = m8'•m4'•m2•m1'•leap’

d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) +
(m8'•m4•m2'•m1) + (m8'•m4•m2•m1) +
(m8•m4'•m2'•m4') + (m8•m4'•m2•m1') +
(m8•m4•m2'•m1')

Autumn 2006 CSE370 - I - Introduction 22

Another example

Door combination lock:
punch in 3 values in sequence and the door opens; if there is an
error the lock must be reset; once the door opens the lock must
be reset

inputs: sequence of input values, reset
outputs: door open/close
memory: must remember combination

or always have it available as an input

Autumn 2006 CSE370 - I - Introduction 23

Implementation in software

integer combination_lock () {
integer v1, v2, v3;
integer error = 0;
static integer c[3] = 3, 4, 2;

while (!new_value());
v1 = read_value();
if (v1 != c[1]) error = 1;

while (!new_value());
v2 = read_value();
if (v2 != c[2]) error = 1;

while (!new_value());
v3 = read_value();
if (v2 != c[3]) error = 1;

if (error == 1) return(0); else return (1);
}

Autumn 2006 CSE370 - I - Introduction 24

Implementation as a sequential digital system

Encoding:
how many bits per input value?
how many values in sequence?
how do we know a new input value is entered?
how do we represent the states of the system?

Behavior:
clock wire tells us when it’s ok
to look at inputs
(i.e., they have settled after change)
sequential: sequence of values
must be entered
sequential: remember if an error occurred
finite-state specification

resetvalue

open/closed

new

clock
state

Autumn 2006 CSE370 - I - Introduction 25

reset closed

S1

Sequential example: abstract control

Finite-state diagram
states (with outputs: open/closed flag)

represent point in execution of machine
transitions (based on inputs: reset, new, comparison results)

changes of state occur when clock says it’s ok

Autumn 2006 CSE370 - I - Introduction 26

reset

not new

closed

S1

closed
C1=value

& new

S2

Sequential example: abstract control

Finite-state diagram
states (with outputs: open/closed flag)

represent point in execution of machine
transitions (based on inputs: reset, new, comparison results)

changes of state occur when clock says it’s ok

Autumn 2006 CSE370 - I - Introduction 27

reset

not new

closed

S1

closed
C1=value

& new

S2

C1!=value
& new

closed

ERR

Sequential example: abstract control

Finite-state diagram
states (with outputs: open/closed flag)

represent point in execution of machine
transitions (based on inputs: reset, new, comparison results)

changes of state occur when clock says it’s ok

Autumn 2006 CSE370 - I - Introduction 28

reset

not newnot new

closed

S1

closed
C1=value

& new

S2

closed
C2=value

& new

S3

C1!=value
& new

closed

ERR

Sequential example: abstract control

Finite-state diagram
states (with outputs: open/closed flag)

represent point in execution of machine
transitions (based on inputs: reset, new, comparison results)

changes of state occur when clock says it’s ok

Autumn 2006 CSE370 - I - Introduction 29

C2!=value
& new

C3!=value
& new

reset

not newnot newnot new

closed

S1

closed
C1=value

& new

S2

closed
C2=value

& new

S3

C3=value
& new

OPEN

open

C1!=value
& new

closed

ERR

Sequential example: abstract control

Finite-state diagram
states: 5 states
transitions: 6 from state to state, 5 self transitions, 1 global
inputs: reset, new, results of comparisons
output: open/closed

Autumn 2006 CSE370 - I - Introduction 30

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux
control

clock

Sequential example: data-path vs. control

Internal structure
data-path

storage for combination
comparators

control
finite-state machine controller
control for data-path
state changes controlled by clock

Autumn 2006 CSE370 - I - Introduction 31

closed

closed
mux=C1reset equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

Sequential example: finite-state machine

Finite-state machine
refine state diagram to include internal structure

Autumn 2006 CSE370 - I - Introduction 32

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
0 0 – S2 S2 C2 closed
0 1 0 S2 ERR – closed
0 1 1 S2 S3 C3 closed
0 0 – S3 S3 C3 closed
0 1 0 S3 ERR – closed
0 1 1 S3 OPEN – open
0 – – OPEN OPEN – open
0 – – ERR ERR – closed

next

Sequential example: state table

Finite-state machine
generate state table (much like a truth-table) closed

closed
mux=C1

reset equal
& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

Autumn 2006 CSE370 - I - Introduction 33

Sequential example: encoding

Encode state table
state can be: S1, S2, S3, OPEN, or ERR

needs at least 3 bits to encode: 000, 001, 010, 011, 100
and as many as 5: 00001, 00010, 00100, 01000, 10000
choose 4 bits: 0001, 0010, 0100, 1000, 0000

output mux can be: C1, C2, or C3
needs 2 to 3 bits to encode
choose 3 bits: 001, 010, 100

output open/closed can be: open or closed
needs 1 or 2 bits to encode
choose 1 bits: 1, 0

Autumn 2006 CSE370 - I - Introduction 34

Sequential example: encoding

Encode state table
state can be: S1, S2, S3, OPEN, or ERR

choose 4 bits: 0001, 0010, 0100, 1000, 0000
output mux can be: C1, C2, or C3

choose 3 bits: 001, 010, 100
output open/closed can be: open or closed

choose 1 bits: 1, 0

reset new equal state state mux open/closed
1 – – – 0001 001 0
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0
0 0 – 0010 0010 010 0
0 1 0 0010 0000 – 0
0 1 1 0010 0100 100 0
0 0 – 0100 0100 100 0
0 1 0 0100 0000 – 0
0 1 1 0100 1000 – 1
0 – – 1000 1000 – 1
0 – – 0000 0000 – 0

next

Autumn 2006 CSE370 - I - Introduction 35

good choice of encoding!

mux is identical to
last 3 bits of state

open/closed is
identical to first bit
of state

Sequential example (cont’d):
encoding

Encode state table
state can be: S1, S2, S3, OPEN, or ERR

choose 4 bits: 0001, 0010, 0100, 1000, 0000
output mux can be: C1, C2, or C3

choose 3 bits: 001, 010, 100
output open/closed can be: open or closed

choose 1 bits: 1, 0

reset new equal state state mux open/closed
1 – – – 0001 001 0
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0
0 0 – 0010 0010 010 0
0 1 0 0010 0000 – 0
0 1 1 0010 0100 100 0
0 0 – 0100 0100 100 0
0 1 0 0100 0000 – 0
0 1 1 0100 1000 – 1
0 – – 1000 1000 – 1
0 – – 0000 0000 – 0

next

Autumn 2006 CSE370 - I - Introduction 36

reset

open/closed

new equal

controller
mux
control

clock

reset

open/closed

new equal

mux
control

clock

comb. logic

state

sequential element,
called a register, for
remembering inputs
when told to by clock

Sequential example (cont’d):
controller implementation

Implementation of the controller

Autumn 2006 CSE370 - I - Introduction 37

system

data-path control

state
registers

combinational
logic

multiplexer comparator
code

registers

register logic

transistors

Design hierarchy

Autumn 2006 CSE370 - I - Introduction 38

Summary

That was what the entire course is about
converting solutions to problems into combinational and
sequential networks effectively organizing the design
hierarchically
doing so with a modern set of design tools that lets us handle
large designs effectively
taking advantage of optimization opportunities

Now lets do it again
this time we'll take nine weeks instead of one

