Working with combinational logic

- Simplification
- two-level simplification
- exploiting don't cares
- algorithm for simplification
- Logic realization
- two-level logic and canonical forms realized with NANDs and NORs
- multi-level logic, converting between ANDs and ORs
- Time behavior
- Hardware description languages

Design example: 2×2-bit multiplier

block diagram and truth table

4-variable K-map for each of the 4 output functions

Design example: 2x2-bit multiplier (activity)

Definition of terms for two-level simplification

- Implicant
- single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube
- Prime implicant
- implicant that can't be combined with another to form a larger subcube
- Essential prime implicant
- prime implicant is essential if it alone covers an element of ON-set
- will participate in ALL possible covers of the ON-set
- DC-set used to form prime implicants but not to make implicant essential
- Objective:
- grow implicant into prime implicants
(minimize literals per term)
- cover the ON-set with as few prime implicants as possible (minimize number of product terms)

Examples to illustrate terms

Algorithm for two-level simplification

- Algorithm: minimum sum-of-products expression from a Karnaugh map
- Step 1: choose an element of the ON-set
- Step 2: find "maximal" groupings of 1 s and Xs adjacent to that element
- consider top/bottom row, left/right column, and corner adjacencies
- this forms prime implicants (number of elements always a power of 2)
- Repeat Steps 1 and 2 to find all prime implicants
- Step 3: revisit the 1s in the K-map
- if covered by single prime implicant, it is essential, and participates in final cover
- 1s covered by essential prime implicant do not need to be revisited
- Step 4: if there remain 1s not covered by essential prime implicants
- select the smallest number of prime implicants that cover the remaining 1 s

Algorithm for two-level simplification (example)

Algorithm for two-level simplification (example)

Algorithm for two-level simplification (example)

2 primes around $A^{\prime} B^{\prime} D^{\prime}$

Autumn 2006

Algorithm for two-level simplification (example)

2 primes around $A^{\prime} B^{\prime} D^{\prime}$

2 primes around ABC'D

3 primes around $A B^{\prime} C^{\prime} D^{\prime}$

2 essential primes

Algorithm for two-level simplification (example)

2 primes around $A B C^{\prime} D$

Autumn 2006

Activity

- List all prime implicants for the following K-map:

- Which are essential prime implicants?
- What is the minimum cover?

Activity

- List all prime implicants for the following K-map:

x	0	x	0
0	1	x	1
0	x	x	0
	D		
x	1	1	1

CD' \quad BC \quad BD \quad AB $\quad A C^{\prime} D$

- Which are essential prime implicants? CD' BD AC'D
- What is the minimum cover? $\quad C^{\prime}$ BD A^{\prime} D

Implementations of two-level logic

- Sum-of-products
- AND gates to form product terms (minterms)
- OR gate to form sum

- Product-of-sums
- OR gates to form sum terms (maxterms)
- AND gates to form product

Why NANDs and NORs

- CMOS technology makes it easier to build NANDs and NORs than ANDs and ORs
- MOS transistors have three terminals: drain, gate, and source
- N-type pass "0" well, P-type pass "1" well

open when: voltage at G is low closed when: voltage $(\mathrm{G})>$ voltage $(\mathrm{S} / \mathrm{D})+\varepsilon$

closed when: voltage at G is low open when: voltage(G) < voltage (S/D) - ε

A simple MOS transistor network (1-input)

what is the relationship between x and $y ?$	
X	Z
0 volts	
3 volts	

Two-level logic using NAND and NOR gates

- NAND-NAND and NOR-NOR networks
- de Morgan's law: $(A+B)^{\prime}=A^{\prime} \cdot B^{\prime} \quad(A \cdot B)^{\prime}=A^{\prime}+B^{\prime}$
- written differently: $A+B=\left(A^{\prime} \cdot B^{\prime}\right) \quad(A \cdot B)=\left(A^{\prime}+B^{\prime}\right)^{\prime}$
- In other words -
- OR is the same as NAND with complemented inputs
- AND is the same as NOR with complemented inputs
- NAND is the same as OR with complemented inputs
- NOR is the same as AND with complemented inputs

Two-level logic using NAND gates (cont'd)

- OR gate with inverted inputs is a NAND gate
- de Morgan's: $\quad A^{\prime}+B^{\prime}=(A \cdot B)^{\prime}$
- Two-level NAND-NAND network
- inverted inputs are not counted
- in a typical circuit, inversion is done once and signal distributed

Two-level logic using NOR gates (cont'd)

- AND gate with inverted inputs is a NOR gate
- de Morgan's: $\quad A^{\prime} \cdot B^{\prime}=(A+B)^{\prime}$
- Two-level NOR-NOR network
- inverted inputs are not counted
- in a typical circuit, inversion is done once and signal distributed

Conversion between forms (cont'd)

- Example: verify equivalence of two forms

$$
\begin{aligned}
Z & =\left\{\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]^{\prime}\right\}^{\prime} \\
& =\left\{\quad\left(A^{\prime}+B^{\prime}\right) \cdot\left(C^{\prime}+D^{\prime}\right) \quad\right\}^{\prime} \\
& =\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime} \\
& =(A \cdot B)+(C \cdot D) \quad
\end{aligned}
$$

Activity: convert to NAND gates

Activity: convert to NAND gates

- Example
(a)

(b)
original circuit

distribute bubbles some mismatches
insert inverters to fix mismatches

Multi-level logic

- $x=A D F+A E F+B D F+B E F+C D F+C E F+G$
- reduced sum-of-products form - already simplified
- 6×3-input AND gates $+1 \times 7$-input OR gate (that may not even exist!)
- 25 wires (19 literals plus 6 internal wires)
- $x=(A+B+C)(D+E) F+G$
- factored form - not written as two-level S-o-P
- 1×3-input OR gate, 2×2-input OR gates, 1×3-input AND gate
- 10 wires (7 literals plus 3 internal wires)

Autumn 2006

Conversion of multi-level logic to NORs

- $F=A(B+C D)+B C^{\prime}$

network

Autumn 2006
CSE370 - III - Working with Combinational Logic

Summary for multi-level logic

- Advantages
- circuits may be smaller
- gates have smaller fan-in
- circuits may be faster
- Disadvantages
- more difficult to design
- tools for optimization are not as good as for two-level
- analysis is more complex

Time behavior of combinational networks

- Waveforms
- visualization of values carried on signal wires over time
- useful in explaining sequences of events (changes in value)
- Simulation tools are used to create these waveforms
- input to the simulator includes gates and their connections
- input stimulus, that is, input signal waveforms
- Some terms
- gate delay - time for change at input to cause change at output
- min delay - typical/nominal delay - max delay
- careful designers design for the worst case
- rise time - time for output to transition from low to high voltage
- fall time - time for output to transition from high to low voltage
- pulse width — time that an output stays high or stays low between changes

Momentary changes in outputs

- Can be useful - pulse shaping circuits
- Can be a problem - incorrect circuit operation (glitches/hazards)
- Example: pulse shaping circuit
- $A^{\prime} \cdot A=0$
- delays matter

Hardware description languages

- Describe hardware at varying levels of abstraction
- Structural description
- textual replacement for schematic
- hierarchical composition of modules from primitives
- Behavioral/functional description
- describe what module does, not how
- synthesis generates circuit for module
- Simulation semantics

HDLs

- Abel (circa 1983) - developed by Data-I/O
- targeted to programmable logic devices
- not good for much more than state machines
- ISP (circa 1977) - research project at CMU
- simulation, but no synthesis
- Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
- similar to Pascal and C
- delays is only interaction with simulator
- fairly efficient and easy to write
- IEEE standard
- VHDL (circa 1987) - DoD sponsored standard
- similar to Ada (emphasis on re-use and maintainability)
- simulation semantics visible
- very general but verbose
- IEEE standard

Verilog

- Supports structural and behavioral descriptions
- Structural
- explicit structure of the circuit
- e.g., each logic gate instantiated and connected to others
- Behavioral
- program describes input/output behavior of circuit
- many structural implementations could have same behavior
- e.g., different implementation of one Boolean function
- We'll mostly be using behavioral Verilog in Aldec ActiveHDL
- rely on schematic when we want structural descriptions

Structural model

module xor_gate (out, a, b);
input a, b;
output out;
wire abar, bbar, t1, t2;
inverter invA (abar, a);
inverter invB (bbar, b);
and_gate and1 (t1, a, bbar);
and_gate and2 (t2, b, abar);
or_gate or1 (out, t1, t2);
endmodule

Simple behavioral model

- Continuous assignment

Simple behavioral model

- always block
module xor_gate (out, a, b); input a, b; output out; reg out;
always @(a or b) begin
\#6 out $=a \wedge b_{i}$
end
endmodule
specifies when block is executed ie. triggered by which signals

Driving a simulation through a "testbench"

repeat (4) begin
\#10 cnt $=$ cnt +1 ;
\$display ("@ time=\%d, x=\%b, y=\%b, cnt=\%b",
\$time, x, y, cnt); end
\#10 \$finish;
end
assign $x=\operatorname{cnt}[1] ;$
assign y = cnt[0];
directive to stop simulation

Complete simulation

- Instantiate stimulus component and device to test in a schematic

Comparator example

```
module Compare1 (Equal, Alarger, Blarger, A, B);
    input A, B;
    output Equal, Alarger, Blarger;
    assign #5 Equal = (A & B) | (~A & ~B);
    assign #3 Alarger = (A & ~B);
    assign #3 Blarger = (~A & B);
endmodule
```


Hardware description languages vs. programming languages

- Program structure
- instantiation of multiple components of the same type
- specify interconnections between modules via schematic
- hierarchy of modules (only leaves can be HDL in Aldec ActiveHDL)
- Assignment
- continuous assignment (logic always computes)
- propagation delay (computation takes time)
- timing of signals is important (when does computation have its effect)
- Data structures
- size explicitly spelled out - no dynamic structures
- no pointers
- Parallelism
- hardware is naturally parallel (must support multiple threads)
- assignments can occur in parallel (not just sequentially)

Hardware description languages and

 combinational logic- Modules - specification of inputs, outputs, bidirectional, and internal signals
- Continuous assignment - a gate's output is a function of its inputs at all times (doesn't need to wait to be "called")
- Propagation delay- concept of time and delay in input affecting gate output
- Composition - connecting modules together with wires
- Hierarchy - modules encapsulate functional blocks

Working with combinational logic summary

- Design problems
- filling in truth tables
- incompletely specified functions
- simplifying two-level logic
- Realizing two-level logic
- NAND and NOR networks
- networks of Boolean functions and their time behavior
- Time behavior
- Hardware description languages
- Later
- combinational logic technologies
- more design case studies

