
Autumn 2006 CSE370 - V - Implementation Technologies 1

Implementation Technologies

Standard gates
gate packages
cell libraries

Regular logic
multiplexers
decoders

Two-level programmable logic
PALs
PLAs
ROMs

Sequential logic elements
discrete flip-flops
programmable logic

Autumn 2006 CSE370 - V - Implementation Technologies 2

Random logic

Transistors quickly integrated into logic gates (1960s)
Catalog of common gates (1970s)

Texas Instruments Logic Data Book – the yellow “bible”
all common packages listed and characterized (delays, power)
typical packages:

in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates

Today, very few parts are still in use
However, parts libraries exist for chip design

designers reuse already characterized logic gates on chips
same reasons as before
difference is that the parts don’t exist in physical inventory –
created as needed

Autumn 2006 CSE370 - V - Implementation Technologies 3

Random logic

Too hard to figure out exactly what gates to use
map from logic to NAND/NOR networks
determine minimum number of packages

slight changes to logic function could decrease cost

Changes too difficult to realize
need to rewire parts
may need new parts
design with spares (few extra inverters and gates on every board)

Need higher levels of integration to keep costs down
cost directly related to number of devices and their pins

Autumn 2006 CSE370 - V - Implementation Technologies 4

Regular logic

Need to make design faster
Need to make engineering changes easier to make
Simpler for designers to understand and map to functionality

harder to think in terms of specific gates
easier to think in terms of larger multi-purpose blocks

Autumn 2006 CSE370 - V - Implementation Technologies 5

multiplexer demultiplexer 4x4 switch

control control

Making connections

Direct point-to-point connections using wires
Route one of many inputs to a single output --- multiplexer
Route a single input to one of many outputs --- demultiplexer

Autumn 2006 CSE370 - V - Implementation Technologies 6

multiple input sources

multiple output destinations

MUX

A B

Sum

Sa

Ss

Sb

B0

MUX

DEMUX

Mux and demux (cont'd)

Uses of multiplexers/demultiplexers in multi-point connections

B1A0 A1

S0 S1

Autumn 2006 CSE370 - V - Implementation Technologies 7

two alternative forms
for a 2:1 Mux truth table

functional form

logical form

A Z
0 I0
1 I1

I1 I0 A Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Z = A' I0 + A I1

Multiplexers/selectors

Multiplexers/selectors: general concept
2n data inputs, n control inputs (called "selects"), 1 output
used to connect 2n points to a single point
control signal pattern forms binary index of input connected to
output

Autumn 2006 CSE370 - V - Implementation Technologies 8

2 -1
I0
I1
I2
I3
I4
I5
I6
I7

A B C

8:1
mux

Z

I0
I1
I2
I3

A B

4:1
mux

ZI0
I1

A

2:1
mux Z

k=0

n

Multiplexers/selectors (cont'd)

2:1 mux: Z = A'I0 + AI1
4:1 mux: Z = A'B'I0 + A'BI1 + AB'I2 + ABI3
8:1 mux: Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +

AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

In general: Z = Σ (mkIk)

in minterm shorthand form for a 2n:1 Mux

Autumn 2006 CSE370 - V - Implementation Technologies 9

Gate level implementation of muxes

2:1 mux

4:1 mux

Autumn 2006 CSE370 - V - Implementation Technologies 10

Multiplexers as general-purpose logic

A 2n:1 multiplexer can implement any function of n variables
with the variables used as control inputs and
the data inputs tied to 0 or 1
in essence, a lookup table

Example:
F(A,B,C) = m0 + m2 + m6 + m7

= A'B'C' + A'BC' + ABC' + ABC

Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +
AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

CA B

0
1
2
3
4
5
6
7
S2

8:1 MUX

S1 S0

Z

Autumn 2006 CSE370 - V - Implementation Technologies 11

control signals B and C simultaneously choose
one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the
upper or lower mux's output to gate to Z

alternative
implementation

C

Z

A B

4:1
mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1
mux

Cascading multiplexers

Large multiplexers can be made by cascading smaller ones

Z

I0
I1
I2
I3

A

I4
I5
I6
I7

B C

4:1
mux

4:1
mux

2:1
mux

8:1
mux

Autumn 2006 CSE370 - V - Implementation Technologies 12

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

C'

C'

0

1 A B

S1 S0

F
0
1
2
3

4:1 MUX

C'
C'
0
1

F

CA B

0
1
2
3
4
5
6
7

1
0
1
0
0
0
1
1

S2

8:1 MUX

S1 S0

Multiplexers as general-purpose logic (cont’d)

A 2n-1:1 multiplexer can implement any function of n variables
with n-1 variables used as control inputs and
the data inputs tied to the last variable or its complement

Example:
F(A,B,C) = m0 + m2 + m6 + m7

= A'B'C' + A'BC' + ABC' + ABC
= A'B'(C') + A'B(C') + AB'(0) + AB(1)

Autumn 2006 CSE370 - V - Implementation Technologies 13

n-1 mux control
variables

single mux data
variable

four possible
configurations
of truth table
rows can be
expressed as
a function of In

I0 I1 . . . In-1 In F

. . . . 0 0 0 1 1

. . . . 1 0 1 0 1

0 In In' 1

Multiplexers as general-purpose logic (cont’d)

Generalization

Example:
G(A,B,C,D)
can be realized
by an 8:1 MUX

choose A,B,C as
control variables

CA B

0
1
2
3
4
5
6
7

1
D
0
1
D’
D
D’
D’

S2

8:1 MUX

S1 S0

A B C D G
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

1

D

0

1

D'

D

D’

D’

Autumn 2006 CSE370 - V - Implementation Technologies 14

Activity

Realize F = B’CD’ + ABC’ with a 4:1 multiplexer and a
minimum of other gates:

A B C D Z
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

S1 S0

Z

0
1
2
3

4:1 MUX

Autumn 2006 CSE370 - V - Implementation Technologies 15

Activity

Realize F = B’CD’ + ABC’ with a 4:1 multiplexer and a
minimum of other gates:

A B C D Z
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

0 when B’C’

D’ when B’C

A when BC’

0 when BC

Z = B’C’(0) + B’C(D’) + BC’(A) + BC(0)

B C

S1 S0

Z

0
1
2
3

4:1 MUX

0
D’
A
0

Autumn 2006 CSE370 - V - Implementation Technologies 16

1:2 Decoder:
O0 = G • S’
O1 = G • S

2:4 Decoder:
O0 = G • S1’ • S0’
O1 = G • S1’ • S0
O2 = G • S1 • S0’
O3 = G • S1 • S0

3:8 Decoder:
O0 = G • S2’ • S1’ • S0’
O1 = G • S2’ • S1’ • S0
O2 = G • S2’ • S1 • S0’
O3 = G • S2’ • S1 • S0
O4 = G • S2 • S1’ • S0’
O5 = G • S2 • S1’ • S0
O6 = G • S2 • S1 • S0’
O7 = G • S2 • S1 • S0

Demultiplexers/decoders

Decoders/demultiplexers: general concept
single data input, n control inputs, 2n outputs
control inputs (called “selects” (S)) represent binary index of
output to which the input is connected
data input usually called “enable” (G)

Autumn 2006 CSE370 - V - Implementation Technologies 17

active-high
enable

active-low
enable

active-high
enable

active-low
enable

O0G

S

O1

O0\G

S

O1

S1

O2

O3

O0G

O1

S0 S1

O2

O3

O0\G

O1

S0

Gate level implementation of demultiplexers

1:2 decoders

2:4 decoders

Autumn 2006 CSE370 - V - Implementation Technologies 18

demultiplexer generates appropriate
minterm based on control signals

(it "decodes" control signals)

Demultiplexers as general-purpose logic

A n:2n decoder can implement any function of n variables
with the variables used as control inputs
the enable inputs tied to 1 and
the appropriate minterms summed to form the function

A'B'C'
A'B'C
A'BC'
A'BC
AB'C'
AB'C
ABC'
ABC

CA B

0
1
2
3
4
5
6
7

S2

3:8 DEC

S1 S0

“1”

Autumn 2006 CSE370 - V - Implementation Technologies 19

F1

F2

F3

Demultiplexers as general-purpose logic (cont’d)

F1 = A'BC'D + A'B'CD + ABCD
F2 = ABC'D' + ABC
F3 = (A' + B' + C' + D')

A B

0 A'B'C'D'
1 A'B'C'D
2 A'B'CD'
3 A'B'CD
4 A'BC'D'
5 A'BC'D
6 A'BCD'
7 A'BCD
8 AB'C'D'
9 AB'C'D
10 AB'CD'
11 AB'CD
12 ABC'D'
13 ABC'D
14 ABCD'
15 ABCD

4:16
DECEnable

C D

Autumn 2006 CSE370 - V - Implementation Technologies 20

0 A'B'C'D'E'
1
2
3
4
5
6
7

S2

3:8 DEC

S1 S0

A B

0
1
2
3S1

2:4 DEC

S0

F

0
1
2 A'BC'DE'
3
4
5
6
7

S2

3:8 DEC

S1 S0

EC D

0 AB'C'D'E'
1
2
3
4
5
6
7 AB'CDE

Cascading decoders

5:32 decoder
1x2:4 decoder
4x3:8 decoders

3:8 DEC

0
1
2
3
4
5
6
7 ABCDE

EC D

S2 S1 S0 S2

3:8 DEC

S1 S0

Autumn 2006 CSE370 - V - Implementation Technologies 21

• • •

inputs

AND
array

• • •

outputs

OR
arrayproduct

terms

Programmable logic arrays

Pre-fabricated building block of many AND/OR gates
actually NOR or NAND
"personalized" by making/breaking connections among the gates
programmable array block diagram for sum of products form

Autumn 2006 CSE370 - V - Implementation Technologies 22

example:
F0 = A + B' C'
F1 = A C' + A B
F2 = B' C' + A B
F3 = B' C + A

personality matrix 1 = uncomplemented in term
0 = complemented in term
– = does not participate

1 = term connected to output
0 = no connection to output

input side:

output side:

product inputs outputs
term A B C F0 F1 F2 F3

AB 1 1 – 0 1 1 0
B'C – 0 1 0 0 0 1
AC' 1 – 0 0 1 0 0
B'C' – 0 0 1 0 1 0
A 1 – – 1 0 0 1

reuse of terms

Enabling concept

Shared product terms among outputs

Autumn 2006 CSE370 - V - Implementation Technologies 23

Before programming

All possible connections are available before "programming"
in reality, all AND and OR gates are NANDs

Autumn 2006 CSE370 - V - Implementation Technologies 24

A B C

F1 F2 F3F0

AB

B'C

AC'

B'C'

A

After programming

Unwanted connections are "blown"
fuse (normally connected, break unwanted ones)
anti-fuse (normally disconnected, make wanted connections)

Autumn 2006 CSE370 - V - Implementation Technologies 25

notation for implementing
F0 = A B + A' B'
F1 = C D' + C' D

AB+A'B'
CD'+C'D

AB

A'B'

CD'

C'D

A B C D

Alternate representation for high fan-in structures

Short-hand notation so we don't have to draw all the wires
signifies a connection is present and perpendicular signal is an

input to gate

Autumn 2006 CSE370 - V - Implementation Technologies 26

A B C F1 F2 F3 F4 F5 F6
0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1
1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 1 1

A'B'C'

A'B'C

A'BC'

A'BC

AB'C'

AB'C

ABC'

ABC

A B C

F1 F2 F3 F4 F5
F6

full decoder as for memory address

bits stored in memory

Programmable logic array example

Multiple functions of A, B, C
F1 = A B C
F2 = A + B + C
F3 = A' B' C'
F4 = A' + B' + C'
F5 = A xor B xor C
F6 = A xnor B xnor C

Autumn 2006 CSE370 - V - Implementation Technologies 27

a given column of the OR array
has access to only a subset of

the possible product terms

PALs and PLAs

Programmable logic array (PLA)
what we've seen so far
unconstrained fully-general AND and OR arrays

Programmable array logic (PAL)
constrained topology of the OR array
innovation by Monolithic Memories
faster and smaller OR plane

Autumn 2006 CSE370 - V - Implementation Technologies 28

minimized functions:

W = A + BD + BC
X = BC'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

A B C D W X Y Z
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0
1 0 1 – – – – –
1 1 – – – – – –

PALs and PLAs: design example

BCD to Gray code converter

Autumn 2006 CSE370 - V - Implementation Technologies 29

not a particularly good
candidate for PAL/PLA

implementation since no terms
are shared among outputs

however, much more compact
and regular implementation

when compared with discrete
AND and OR gates

A B C D

minimized functions:

W = A + BD + BC
X = B C'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

PALs and PLAs: design example (cont’d)

Code converter: programmed PLA

A

BD

BC

BC'

B

C

A'B'C'D

BCD

AD'

BCD'

W X Y Z

Autumn 2006 CSE370 - V - Implementation Technologies 30

4 product terms
per each OR gate

A

BD

BC

0

BC'

0

0

0

B

C

0

0

A'B'C'D

BCD

AD'

B'CD'

W X Y Z

A B C D

PALs and PLAs: design example (cont’d)

Code converter: programmed PAL

Autumn 2006 CSE370 - V - Implementation Technologies 31

W

X

Y

Z

B

B

B

B

B

B

\B
C

C

C

C

C
A

AA

D

D

D

\D

\D

PALs and PLAs: design example (cont’d)

Code converter: NAND gate implementation
loss or regularity, harder to understand
harder to make changes

Autumn 2006 CSE370 - V - Implementation Technologies 32
EQ NE LT GT

A'B'C'D'

A'BC'D

ABCD

AB'CD'

AC'

A'C

B'D

BD'

A'B'D

B'CD

ABC

BC'D'

A B C D

PALs and PLAs: another design example

Magnitude comparator
A B C D EQ NE LT GT
0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 1 0 0 0
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 1 0 1
1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 1 0 1
1 1 0 1 0 1 0 1
1 1 1 0 0 1 0 1
1 1 1 1 1 0 0 0

minimized functions:
EQ = A’B’C’D’ + A’BC’D + ABCD + AB’CD’ NE = AC’ + A’C + B’D + BD’
LT = A’C + A’B’D + B’CD GT = AC’ + ABC + BC’D’

Autumn 2006 CSE370 - V - Implementation Technologies 33

Activity

Map the following functions to the PLA below:
W = AB + A’C’ + BC’
X = ABC + AB’ + A’B
Y = ABC’ + BC + B’C’

A B C

W X Y

Autumn 2006 CSE370 - V - Implementation Technologies 34

Activity (cont’d)

9 terms won’t fit in a 7 term PLA
can apply concensus theorem
to W to simplify to:
W = AB + A’C’

8 terms wont’ fit in a 7 term PLA
observe that AB = ABC + ABC’
can rewrite W to reuse terms:
W = ABC + ABC’ + A’C’

Now it fits
W = ABC + ABC’ + A’C’
X = ABC + AB’ + A’B
Y = ABC’ + BC + B’C’

This is called technology mapping
manipulating logic functions
so that they can use available
resources

ABC

ABC’

A’C’

AB’

A’B

BC

B’C’

A B C

W X Y

Autumn 2006 CSE370 - V - Implementation Technologies 35

decoder

0 n-1

Address

2 -1
n

0

1 1 1 1

word[i] = 0011

word[j] = 1010

bit lines (normally pulled to 1 through
resistor – selectively connected to 0
by word line controlled switches)

j

i

internal organization

word lines (only one
is active – decoder is
just right for this)

Read-only memories

Two dimensional array of 1s and 0s
entry (row) is called a "word"
width of row = word-size
index is called an "address"
address is input
selected word is output

Autumn 2006 CSE370 - V - Implementation Technologies 36

F0 = A' B' C + A B' C' + A B' C

F1 = A' B' C + A' B C' + A B C

F2 = A' B' C' + A' B' C + A B' C'

F3 = A' B C + A B' C' + A B C'

truth table

A B C F0 F1 F2 F3
0 0 0 0 0 1 0
0 0 1 1 1 1 0
0 1 0 0 1 0 0
0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 1 0 1 0 0

block diagram

ROM
8 words x 4 bits/word

address outputs
A B C F0F1F2F3

ROMs and combinational logic

Combinational logic implementation (two-level canonical form)
using a ROM

Autumn 2006 CSE370 - V - Implementation Technologies 37

ROM structure

Similar to a PLA structure but with a fully decoded AND array
completely flexible OR array (unlike PAL)

n address lines

• • •

inputs

decoder 2n word
lines

• • •

outputs

memory
array

(2n words
by m bits)

m data lines

Autumn 2006 CSE370 - V - Implementation Technologies 38

ROM vs. PLA

ROM approach advantageous when
design time is short (no need to minimize output functions)
most input combinations are needed (e.g., code converters)
little sharing of product terms among output functions

ROM problems
size doubles for each additional input
can't exploit don't cares

PLA approach advantageous when
design tools are available for multi-output minimization
there are relatively few unique minterm combinations
many minterms are shared among the output functions

PAL problems
constrained fan-ins on OR plane

Autumn 2006 CSE370 - V - Implementation Technologies 39

Regular logic structures for two-level logic

ROM – full AND plane, general OR plane
cheap (high-volume component)
can implement any function of n inputs
medium speed

PAL – programmable AND plane, fixed OR plane
intermediate cost
can implement functions limited by number of terms
high speed (only one programmable plane that is much smaller than
ROM's decoder)

PLA – programmable AND and OR planes
most expensive (most complex in design, need more sophisticated tools)
can implement any function up to a product term limit
slow (two programmable planes)

Autumn 2006 CSE370 - V - Implementation Technologies 40

Regular logic structures for multi-level logic

Difficult to devise a regular structure for arbitrary connections
between a large set of different types of gates

efficiency/speed concerns for such a structure
in 467 you'll learn about field programmable gate arrays (FPGAs)
that are just such programmable multi-level structures

programmable multiplexers for wiring
lookup tables for logic functions (programming fills in the table)
multi-purpose cells (utilization is the big issue)

Use multiple levels of PALs/PLAs/ROMs
output intermediate result
make it an input to be used in further logic

Autumn 2006 CSE370 - V - Implementation Technologies 41

The 22V10 PAL

Combinational logic
elements (SoP)
Sequential logic
elements (D-FFs)
Up to 10 outputs
Up to 10 FFs
Up to 22 inputs

This will be
our basic building block

Autumn 2006 CSE370 - V - Implementation Technologies 42

D Q
Q

Implementation using PALs

Programmable logic building block for sequential logic
macro-cell: FF + logic

D-FF
two-level logic capability like PAL (e.g., 8 product terms)

Autumn 2006 CSE370 - V - Implementation Technologies 43

22V10 PAL Macro Cell

Sequential logic element + output/input selection

Autumn 2006 CSE370 - V - Implementation Technologies 44

Implementation technologies summary

Random logic
passe’ – too cumbersome and costly to design and build

Regular logic
multiplexers/decoders
PLAs/PALs
ROMs
advantages/disadvantages of each

Sequential logic elements of programmable logic

