CSE 370 Spring 2006
Introduction to Digital Design

Lecture 8: Introduction to Verilog

IDCLONIC DODD Last Lecture
;."u. 1 '.1. i a. F Design Examples a K-maps
an B Minimization Algorithm

Today
E Introduction to Verilog

‘MPORARY
D[N (@

Administrivia

® Homework 3 due Friday

Algorithm for two-level simplification

m Algorithm: minimum sum-of-products expression from a Karnaugh map

E Step 1: choose an element of the ON-set
E Step 2: find "maximal" groupings of 1s and Xs adjacent to that
element
E consider top/bottom row, left/right column, and corner
adjacencies
E this forms prime implicants (number of elements always a power
of 2)
E Repeat Steps 1 and 2 to find all prime implicants
B Step 3: revisit the 1s in the K-map
k if covered by single prime implicant, it is essential, and
participates in final cover
I 1s covered by essential prime implicant do not need to be
revisited
B Step 4: if there remain 1s not covered by essential prime implicants
I select the smallest number of prime implicants that cover the
remaining 1s

Algorithm for two-level
simplification (example)

3 primes around AB'C'D’

1
0 1 1 1
D
0 X[l X | 0
C
0 1 0 1 0 1 0 1
2 primes around A'BC'D 2 primes around ABC'D
A A
X 1 0 1 X 1 0 1
0 1 1 1 b 0 1 1 1 D
0 X X 0 0 X X 0
Cc C
0 1[0 1 0 1]l O 1

2 essential primes

minimum cover (3 primes)

Visit All in the On Set?

Activity

m List all prime implicants for the following K-map:

m Which are essential prime implicants?

m What is the minimum cover?

Loose end: POS minimization
using k-maps

m Using k-maps for POS minimization

E Encircle the zeros in the map

E Interpret indices complementary to SOP form
A

CDABoo 01 11 10 F = (B'+C+D)(B+C+D")(A+B'+C)
00| 1 |[o |[o]| 1
o1[3| 1 [[o|[[Check using de Morgan’s on SOP
— D | J— L] 1] 1/)
Jufafa]a]s F = BC'D'+B’C’'D+ABC
1001111 (F)' = (BC'D'+B'C’'D+ABC’)’

(F) = (BC'D')+(B'C'D)+(ABC’)’
F = (B'+C+D)(B+C+D’)(A'+B'+C)

B

Ways of specifying circuits

B Schematics
E Structural description
B Describe circuit as interconnected elements
¥ Build complex circuits using hierarchy
E Large circuits are unreadable
m HDLs
E Hardware description languages
I Not programming languages
I Parallel languages tailored to digital design
E Synthesize code to produce a circuit

Hardware description languages
(HDLS)

m Abel (~1983)
E Developed by Data-1/0
E Targeted to PLDs
E Limited capabilities (can do state machines)
m Verilog (~1985)
E Developed by Gateway (now part of Cadence)
E Similar to C
E Moved to public domain in 1990
m VHDL (~1987)
F DoD sponsored
F Similar to Ada

Verilog

module toplevel(clock,reset);

input clock;
input reset;
reg flopl;
reg flop2;

always @ (posedge reset or posedge clock)
if (reset)
begin
flopl <= 0;
flop2 <= 1;
end
else
begin
flopl <= flop2;
flop2 <= flopl;
end

endmodule

Verilog versus VHDL

m Both “IEEE standard” languages

m Most tools support both

m Verilog is “simpler”
E Less syntax, fewer constructs

m VHDL is more structured
E Can be better for large, complex systems
F Better modularization

Simulation versus synthesis

m Simulation

E “Execute” a design to verify correctness
m Synthesis

B Generate a netlist from HDL code

- "IIIIIIII"""‘ circuit
description

“execution” simulation

functional functional/timing
validation validation

Simulation versus synthesis : :
, y Simulation
(con’t)
m Simulation m You provide an environment
E Models what a circuit does E Using non-circuit constructs
E Multiply is “*", ignoring implementation options E Read files, print, control simulation
E Can include static timing B Using Verilog simulation code | . - .
. . ote: We will ignore
B Allows you to test design options F A “test fixture” timing and test benches
m Synthesis until next Verilog lecture
E Converts your code to a netlist Simulation
F Can simulate synthesized design
i Test Fixture Circuit Description
E Tools map your netlist to hardware (Specification) (Synthesizeable)
m Verilog and VHDL simulate and synthesize
E CSE370: Learn simulation
B CSE467 (Advanced Digital Design): Learn synthesis
Levels of abstraction Structural versus behavioral
m Verilog supports 4 description levels Verl IO g
B Switch / m Structural
E Gate struetura E Describe explicit circuit elements
B Dataf.low . ~~ pehavioral B Describe explicit connections between elements
B Algorithmic F Connections between logic gates
m Can mix & match levels in a design B Just like schematics, but using text
B Designs that combine dataflow and algorithmic m Behavioral
constructs and synthesis are called RTL m Describe circuit as algorithms/programs
E Register Transfer Level ¥ What a component does
E Input/output behavior
B Many possible circuits could have same behavior
I Different implementations of a Boolean function

Verilog tips

®m Do not write C-code
E Think hardware, not algorithms
k Verilog is inherently parallel
¥ Compilers don’t map algorithms to circuits well
B Do describe hardware circuits
F First draw a dataflow diagram
B Then start coding
B References

B Tutorial and reference manual are found in ActiveHDL
help

B And in this week’s reading assignment
B “Starter’s Guide to Verilog 2001” by Michael Ciletti
copies for borrowing in hardware lab

Basic building blocks: Modules

m Instanced into a design
ENever called

m lllegal to nest module defs.

m Modules execute in parallel

m Names are case sensitive

m // for comments

® Name can’t begin with a
number

m Use wires for connections
m and, or, not are keywords
m All keywords are lower case

A

B

// first simple example
module smpl (X,Y,A,B,C);
input A,B,C;
output X,Y;
wire E
and gl1(E,A,B);
not g2(Y,C);

m Gate declarations (and, or, etc) or g3(X,E,Y);

EList outputs first
B Inputs second

endmodule

Modules are circuit components

m Module has ports A
B External connections B
EAB,C, XY in example
m Port types ¢
Einput
Eoutput // previous example as a

// Boolean expression

Einout (tristate
() module smpl2 (X,Y,A,B,C);

m Use assign statements for input A,B,C;
Boolean expressions output X,Y;
assign X = (A&B)|~C;
Fand < & assign Y = ~C;
For < | endmodule

Enot < ~

Structural

module xor_gate (out,a,b);

input a,b;

output out;

wire abar, bbar, tl1, t2;

not inva (abar,a);

not invb (bbar,b);

and andl (tl,abar,b);

and and2 (t2,bbar,a);

or orl (out,tl,t2);
endmodule

Verilog

8 basic gates (keywords):
and, or, nand, nor
buf, not, xor, xnor

abar

N
a
4

inva

OR2

E out
5 :

invb

b M bbar
Do

Behavioral Verilog

A —]

m Describe circuit behavior B —| Adder

E Not implementation Cin —— — Cout

module full_addr (Sum,Cout,A,B,Cin);
input A, B, Cin;
output Sum, Cout;
assign {Cout, Sum} = A + B + Cin;
endmodule

{Cout, Sum} is a concatenation

— Sum

Behavioral 4-bit adder

module add4 (SUM, OVER, A, B):

input [3:0] A;

input [3:0] B;

output [3:0] SUM;

output OVER;

assign {OVER, SUM[3:01} = A[3:0] + B[3:0];
endmodule

“[3:0] A" is a 4-wire bus labeled “A”
Bit 3 is the MSB
Bit O is the LSB

Can also write “[0:3] A” Buses are implicitly connected
Bit O is the MSB If you write BUS[3:2], BUS[1:0]
Bit 3 is the LSB They become part of BUS[3:0]
Data types Numbers

m Values on a wire
E O, 1, x (don't care), z (tristate or unconnected)
m Vectors
F A[3:0] vector of 4 bits: A[3], A[2], A[1], A[O]
¥ Unsigned integer value
E Indices must be constants

F Concatenating bits/vectors
Fe.g. sign extend
mB[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
mB[7:0] = {4{A[3]}, A[3:0]};
E Style: Use a[7:0] =Db[7:0] +c;
Not a=b+c;

F Legal syntax: C = &A[6:7]; // logical and of bits 6
and 7 of A

m Format: <sign><size><base format><number>
m 14

B Decimal number
m —-4'bl1

E 4-bit 2's complement binary of 0011 (is 1101)
m 12’b0000_0100_0110

E 12 bit binary number (_ is ignored)
m 3'h046

F 3-digit (12-bit) hexadecimal number
m Verilog values are unsigned

k C[4:0] = A[3:0] + B[3:0];

rif A=0110 (6) and B = 1010(-6), then C = 10000
(not 00000)

kB is zero-padded, not sign-extended

Operators

Verilog :)
Oparato N Functional Gro B greater than Relational
b E greater than or equal to Relational
oeel eelect P less than Relational
2 bit-selacl or port-sslec b less than or equal fo Relational
thesi: . . "
] parenthesis == logical equality Equality
| logical nogation Logical I= lagical inequaliry Equality
& Fedocion AND Reduchon o= | cose squaliy Equaliy
1 reduction OR Reduction == case inequality Equality
~& redection NAND Reduction o o
- reduction NOR Reduction & bit-wise AND Bit-wise
A reduection XOR Reduction - .
~for e | reduction XNOR Reduction :_ or :::::: ;ﬁgR g::::
+ unary [sign) plus Arithmetic . .
unary [sign) minus Arithmelic | bit-wise OR Bit-wise
{1 concatenation Conc L logical AND Legical
Wn replication Replication 1 logical OR Logical
mulkiply Arithmetic 7 conditicnal Conditional
! divide Arithmelic
% modulus Arithmetic
+ birary plus Arithrmelic))
binory minus Arithmetic Similar to C operators
<< shift left Shift
> shift right Shift

Continuous assignment

m Assignment is continuously evaluated
F Corresponds to a logic gate
B Assignments execute in parallel

Boolean operators

/ (~ for bit-wise negation)
assign A = X | (Y & ~Z);

bits can assume four values

assign B[3:0] = 47b01XX; «— (0,1, X 2)

_ variables can be n-bits wide
assign C[15:0] = 4"hOOff; «——

(MSB:LSB)
assign #3 {Cout, Sum[3:0]} = A[3:0] + B[3:0] + Cin;

’ arithmetic operator

Gate delay (used by simulator) multiple assignment (concatenation)

Example: A comparator

module Comparel (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;
assign Equal = (A & B) | (<A & ~B);
assign Alarger = (A & ~B);
assign Blarger = (~A & B);
endmodule

Top-down design and bottom-up design are both okay
= module ordering doesn’t matter
= because modules execute in parallel

Comparator example (con’t)

// Make a 4-bit comparator from 4 1-bit comparators

module Compared4(Equal, Alarger, Blarger, A4, B4);
input [3:0] A4, B4;
output Equal, Alarger, Blarger;
wire e0, el, e2, e3, AlO, Al1, Al2, Al13, B10O, BI1, BI2, BI3;

Comparel cp0O(eO, AlO, BIO, A4[0], B4[0]):
Comparel cpl(el, All, BI1, A4[1], B4[1]);
Comparel cp2(e2, Al2, BI2, A4[2], B4[2]):
Comparel cp3(e3, Al3, BI3, A4[3], B4[3],):

assign Equal = (e0 & el & e2 & e3);
assign Alarger = (AI3 | (AI2 & e3) |
(AIl & e3 & €2) |
(AIO & e3 & e2 & el));
assign Blarger = (~Alarger & ~Equal);
endmodule

Functions

B Use functions for complex combinational logic

module and_gate (out, inl, in2);
input inl, In2;
output out;

assign out = myfunction(inl, in2);

function myfunction;
input inl, in2;

begin
myfunction = Inl & In2;
end . Benefit:
endfunction .
Functions force a result
endmodule = Compiler will fail if function

does not generate a result

Sequential Verilog-- Blocking
and non-blocking assignments

m Blocking assignments (Q = A)
B Variable is assigned immediately
F New value is used by subsequent statements
m Non-blocking assignments (Q <= A)

E Variable is assigned after all scheduled statements are
executed

E Value to be assigned is computed but saved for later
E Usual use: Register assignment
E Registers simultaneously take new values after the clock

edge
[| Examp|e: Swap always @(posedge CLK) always @(posedge CLK)
begin begin
temp = B; A <= B;
B = A; B <= A;
A = temp; end

end

Sequential Verilog--
Assignments- watch out!

m Blocking versus Non-blocking
reg B, C, D; reg B, C, D;
always @(posedge clk) always @(posedge clk)
begin begin
B = A; B <= A;
C=8B C <= B;
D=¢C D <= C;

end

()
>
Q.

2
2
a

Summary of two-level
combinational-logic

m Logic functions and truth tables
E AND, OR, Buf, NOT, NAND, NOR, XOR, XNOR
E Minimal set
m Axioms and theorems of Boolean algebra
B Proofs by re-writing
B Proofs by perfect induction (fill in truth table)
m Gate logic
E Networks of Boolean functions
F NAND/NOR conversion and de Morgan’s theorem
m Canonical forms
B Two-level forms
B Incompletely specified functions (don’t cares)
m Simplification
B Two-level simplification (K-maps)

Solving combinational design
problems

m Step 1: Understand the problem
E Identify the inputs and outputs
E Draw a truth table
m Step 2: Simplify the logic
B Draw a K-map
B Write a simplified Boolean expression
Bk SOP or POS
F Use don'’t cares
m Step 3: Implement the design
F Logic gates and/or Verilog

