CSE 370 Spring 2006
Introduction to Digital Design

Lecture 15:
Sequential Verilog

. Last Lecture
'.1. ..‘,, _ E Latches
L B Flip-flops

|‘ ,I.I‘.Il.'

I B

Today
E Timing Methodology
E Sequential Verilog

Administrivia
m Turn in HW#5

m Lab #6 on the web

Quiz #2

Quiz #2

Timing methodologies _ : :
| g | g Timing methodologies (cont’d)
m Rules for interconnecting components and clocks
E guarantee proper operation of system when strictly m Definition of terms
followed B clock: periodic event, causes state of memory element to change
. can be rising edge or falling edge or high level or low level
m Approach depends on building blocks used for memory _ . ng eca gecq d ,
elements E setup time: minimum time before the clocking event by which the
input must be stable (Tsu)
E we'll focus on systems with edge-triggered flip-flops E hold time: minimum time after the clocking event until which the
rfound in programmable logic devices input must remain stable (Th)
B many custom integrated circuits focus on level- To T, data s
sensitive latches nput :*EE’*: 0]
m Basic rules for correct timing: |‘>
. . . . lock
F (1) correct inputs, with respect to time, are provided to coe clock
in- there is a timing "window" i
the ﬂlp f_lops aroynd th(_e clockirjg event
F (2) no flip-flop changes state more than once per during which the input must
. remain stable and unchanged clock | | |
clocking event in order to be recognized
flip-flops flip-flops (cont’'d)
Ib oo Type When inputs are sampled| When output is valid
A | | | | unclocked always propagation delay from input change
CLK D [latch
positive ‘ ‘ ‘ ‘
edge-triggered level-sensitive | clock high propagation delay from input change
flip-flop okl LT LT LT LI LT Lo latch (Tsu/Th around falling | or clock edge (whichever is later)
edge of clock)
Qedge master-slave clock high propagation delay from falling edge
flip-flop (Tsu/Th around falling of clock
D oL edge of clock)
G Qlatch B B
T negative clock hi-to-lo transition | propagation delay from falling edge
CLK edge-triggered | (Tsu/Th around falling | of clock
transparent flip-flop edge of clock)
(level-sensitive)
atc behavior is the same unless input changes
while the clock is high

Typical timing specifications
m Positive edge-triggered D flip-flop
E setup and hold times
E minimum clock width

F propagation delays (low to high, high to low, max and
typical)

Tsu Th
e 1305 | —
18 |05 ,

D ns |ns I
3.3 3.

Cascading edge-triggered flip-flops

m Shift register
E new value goes into first stage
B while previous value of first stage goes into second

stage
E consider setup/hold/propagation delays (prop must be
> hold)
Q0 Q1
IN D Q D Q ouT
|—> |—>

CLK 100

Clk ns ns '
IN I 1 I 1
J(S T\— @
T .ons Q1
Q 3.(p3dns Lins CLK
1.1ns
all measurements are made from the clocking event (the rising edge of the clock)
Cascading edge-triggered Variables

flip-flops (cont’'d)
m Why this works
F propagation delays exceed hold times
B clock width constraint exceeds setup time

B this guarantees following stage will latch current value
before it changes to new value

In | J 1
I an I an timing constraints
) R guarantee proper
Q0 ! operation of
- LT, Ty cascaded components
1.1-3.6ns 1.1-3.6ns
Q1
assumes infinitely fast
CLK ! L distribution of the clock
—> —>
h

oI
_‘

h
.5ns 0.5ns

m wire
E Connects components together
m reg
B Saves a value
E Part of a behavioral description

E Does NOT necessarily become a register when you
synthesize

F May become a wire
m The rule

F Declare a variable as reqg if it is a target of an assignment
statement

F Continuous assign doesn’t count

Sequential Verilog always block

B A procedure that describes a circuit’s function

B Sequential circuits: Registers & combinational logic _ _
B Use positive edge-triggered registers = Can conta!n multlple s.tatements
E Avoid latches and negative edge-triggered registers . Ce.m contain i, for, M_nle, casg _
m Register is triggered by “posedge clk” B Trlggers at the specified cond|t|9n§
E begin/end groups statements within always block
module register(Q, D, clock); |Example: A D flip-flop module register(Q, D, clock);
input D, clock; input D, clock;
output Q; output Q;
reg Q: A real register. Holds Q reg Q;
between clock edges _
always @(posedge clock) begin always @(posedge clock) begin
Q = D; Q = D;
end end
endmodule endmodule

Incomplete trigger or
always example Incomplete assignment

m What if you omit an input trigger (e.g. in2)
Not a real register!! B Compiler will insert a register to hold the state

Holds assignment in . . v
always block B Becomes a sequential circuit — NOT what you want

module and_gate(out, inl, in2);
input inl, In2;

module and_gate (out, inl, in2);

output out;
reg out; input inl, in2; A real register!! Holds out
The compiler will not synthesize output out; because /n2 isn’'t specified
always @(inl or in2) begin this code to a register, because reg out; in always trigger
out = inl & in2; out changes whenever /n1 or in2 i i
end change. Can instead simply write always @(inl) begin
- - - 5. out = inl & in2;
endmodule wire out, !nl, !n2,_ end
and (out, inl, in2); endmodule > rules:
1) Include all inputs in the trigger list

2) Use complete assignments
= Every path must lead to an assignment for out
= Otherwise out needs a state element

specifies when block is executed
i.e. triggered by changes in /ini or in2

Another way: Use functions

B Functions for combinational logic
F Functions can’t have state
module and_gate (out, inl, in2);

input inl, in2;
output out;

assign out = myfunction(inl, in2);
function myfunction;

input inl, in2;

. Benefits:
beglg tion = inl & in2- Functions force a result
enzy unction = 1in ne; = Compiler will fail if function
endfunction does not generate a result
endmodule = If you build a function wrong

If you build an always block
wrong you get a register

the circuit will not synthesize.

|f
m Same as C if statement

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);

input [1:0] sel; // 2-bit control signal
input A, B, C, D;

output Y;

reg Y; // target of assignment

always @(sel or A or B or C or D)
if (sel == 27b00) Y = A;

else if (sel == 2’b01) Y = B;
else if (sel == 2’b10) Y = C;
else if (sel == 2°bl11l) Y = D;

endmodule

= Single /f statements synthesize to multiplexers
= Nested /f/else statements usually synthesize to logic

If (another way)

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);

input [1:0] sel; // 2-bit control signal
input A, B, C, D;

output Y;

reg Y; // target of assignment

always @(sel or A or B or C or D)

if (sel[0] == 0)
if (sel[1] == 0)
else

else
if (sel[l] == 0) Y
else Y

endmodule

< <
1 u
w >

OO

case

// Simple 4-1 mux

module mux4 (sel, A, B, C, D, Y);

input [1:0] sel; // 2-bit control signal
input A, B, C, D;

output Y;

reg Y; // target of assignment

always @(sel or A or B or C or D)
case (sel)

2°b00: Y = A;
2’b01: Y = B;
2’b10: Y = C;
2’b11: Y = D; :
endcase case executes sequentially
endmodule = First match executes

= Don't need to break out of case
case statements synthesize to muxes

case (another way)

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);

input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;

assign out = mymux(sel, A, B, C, D);
function mymux;
input [1:0] sel, A, B, C, D;
begin
case (sel)
27b00: mymux
27b01: mymux
2”’b10: mymux
2’bll: mymux
endcase

o
M

OO w>

end
endfunction
endmodule

Note: You can define a function in a file
Then /nclude it into your Verilog module

default case

// Simple binary encoder (input is 1l-hot)
module encode (A, Y);

input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment
always @CA)
case (A)
87b00000001: Y = 0O; If you omit the default, the compiler will
87b00000010: Y = 1; create a latch for Y
87b00000100: Y = 2; = Either list all 256 cases
87b00001000: Y = 3; = Or use a function (compiler will
87b00010000: Y = 4; warn you of missing cases)
87b00100000: Y = 5;
8”b01000000: Y = 6;
87b10000000: Y = 7;
default: Y = 3”bx; // Don’t care about other cases
endcase
endmodule

case executes sequentially

// Priority encoder
module encode (A, Y);

input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment

always @CA)
case (1°bl)

A[O]: Y = O;

ﬁg} :{(z ; Case statements execute sequentially

A[3]: Y = 3: = Take the first alternative that matches

A[4]1: Y = 4;

A[5]: Y = 5;

A[6]: Y = 6;

A[7]: Y = 7;

default: Y = 37bx; // Don’t care when input is all 0’s
endcase

endmodule

for

// simple encoder
module encode (A, Y);

input [7:0] A; // 8-bit input vector

output [2:0] Y; // 3-bit encoded output

reg [2:0] Y; // target of assignment

integer i; // Temporary variables for program

reg [7:0] test;

always @(A) begin
test = 8b”00000001;
Y = 37bx;
for (i = 0; 1 <8; 1 =1 + 1) begin
if (A==test) Y = 1i;
test = test << 1; // Shift left, pad with Os
end

end for statements synthesize as
endmodule cascaded combinational logic
= Verilog unrolls the loop

Verilog while/repeat/forever

m while (expression) statement

E execute statement while expression is true
B repeat (expression) statement

E execute statement a fixed number of times
m forever statement

E execute statement forever

Blocking and non-blocking
assignments

m Blocking assignments (Q = A)

B Variable is assigned immediately

B New value is used by subsequent statements
®m Non-blocking assignments (Q <= A)

B Variable is assigned after all scheduled statements
are executed

E Value to be assigned is computed but saved for later
B Example: Swap

always @(posedge CLK) always @(posedge CLK)
begin begin
temp = B; A <= B;
B = A; B <= A;
A = temp; end
end

Blocking and non-blocking
assignments

reg B, C, D; reg B, C, D;
always @(posedge clk) always @(posedge clk)
begin begin
B = A; B <= A;
C = B; C <= B;
D =C; D <= C;
end end

Swap

m The following code executes incorrectly
E One block executes first
E Loses previous value of variable

always @(posedge CLK) always @(posedge CLK)
begin begin
A = B; B = A;
end end

m Non-blocking assignment fixes this
E Both blocks are scheduled by posedge CLK

always @(posedge CLK) always @(posedge CLK)
begin begin
A <= B; B <= A;

end end

Parallel versus serial execution

m assign statements are implicitly parallel
F “=" means continuous assignment
B

B Example c A
assign E = A & D;
assign A =B & C; E

F A and E change if B changes
m always blocks execute in parallel
E always @(posedge clock)
B Procedural block internals not necessarily parallel
B “=" is a blocking assignment (sequential)
B “<="is a nonblocking assignment (parallel)
B Examples of procedures: always, function, etc.

Synthesis examples

a[o]

W=
az] Bb?; E)D_ apr

wire [3:0] x, y, a, b, c, d; o
assign apr = "a; gl
assign y = a & ~b; o ng—apr

assign x = (a == b) ? Gl

a+c:d+ a;

—_— ali]
T ¥I1]
a B[] m—
C
X a
c
d
b

