
Lecture 25

Logistics
HW8 posted today, due 12/5
Lab9 this weekLab9 this week
No Class for the rest of the week!

Last lecture
Robot ant in maze
Started on FSM simplification a little bit

Today
M FSM i lifi ti

1CSE370, Lecture 22

More on FSM simplification

25

The “WHY” slide

FSM minimization
It is best to minimize FSM before expressing it as a logic
circuit As you saw in the ant robot example minimizationcircuit. As you saw in the ant robot example, minimization
step is about looking for some patterns and merging states.
There are systematic ways to do this (rather than the way
we’d done it for the ant example) and we will learn them
here.

2CSE370, Lecture 2225

Two Methods for FSM Minimization

Row matching
Easier to do by hand
Misses minimization opportunitiesMisses minimization opportunities

Implication table
Guaranteed to find the most reduced FSM
More complicated algorithm (but still relatively easy to write a
program to do it)

3CSE370, Lecture 2225

Simple row matching does not guarantee
most reduced state machine

Next StateNext State
Present State X=0 X=1 Output

S0 S0 S1 0
S1 S1 S2 1
S2 S2 S1 0

4CSE370, Lecture 2225

The Implication chart method

Here’s a slightly funkier FSM as an example

5CSE370, Lecture 2225

Step 1: Draw the table

6CSE370, Lecture 2225

Step 2: Consider the outputs

7CSE370, Lecture 2225

Step 3: Add transition pairs

C-R
0
1

8CSE370, Lecture 2225

Step 3: Add transition pairs

C-R
0
1

9CSE370, Lecture 22

Implied State Pairs

25

Step 4 (repeated): Consider transitions

10CSE370, Lecture 2225

Final reduced FSM

11CSE370, Lecture 2225

Odd parity checker revisited

Next State
P t St t X 0 X 1 O t t

S1

12CSE370, Lecture 2225

Present State X=0 X=1 Output
S0 S0 S1 0
S1 S1 S2 1
S2 S2 S1 0

S2

S0 S1

S0-S2

S1–S1

inputs here

More complex state minimization

Multiple input example

present next state output
state 00 01 10 11
S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S4 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1

inputs here

10
01

11

00

00

01

1110

10
00

11

00

1110

01

S0
[1]

S2
[1]

S1
[0]

S3
[0]

01

13CSE370, Lecture 22

symbolic state
transition table

S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

1110

10

01

1100

11

10

11
01

00S4
[1]

S5
[0]

25

Minimized FSM

Implication chart method
cross out incompatible states based on outputs
then cross out more cells if indexed chart entries are already

S0-S1
S1-S3
S2-S2
S3-S4

S0-S1
S3-S0
S1-S4
S4 S5

then cross out more cells if indexed chart entries are already
crossed out

S1

S2

S3

present next state output
state 00 01 10 11
S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S4 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0

14CSE370, Lecture 22

S0-S0
S1-S1
S2-S2
S3-S5

S4-S5

S0-S1
S3-S4
S1-S0
S4-S5

S1-S0
S3-S1
S2-S2
S4-S5

S4-S0
S5-S5

S1-S1
S0-S4

S4

S5

S0 S1 S2 S3 S4

S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

25

Minimized FSM

present next state output
state 00 01 10 11

present next state output
state 00 01 10 11
S0' S0' S1 S2 S3' 1

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S4 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

S0-S1
S1-S3
S2-S2
S3-S4

S0-S0
S1-S1
S2-S2

S0-S1
S3-S0
S1-S4
S4-S5

S1-S0
S3-S1
S2-S2

S1

S2

S3

S4

15CSE370, Lecture 22

minimized state table
(S0==S4) (S3==S5)

S0 S0 S1 S2 S3 1
S1 S0' S3' S1 S3' 0
S2 S1 S3' S2 S0' 1
S3' S1 S0' S0' S3' 0

S3-S5
S0-S1
S3-S4
S1-S0
S4-S5

S4-S5

S4-S0
S5-S5

S1-S1
S0-S4 S5

S0 S1 S2 S3 S4

25

Minimizing incompletely specified FSMs

Equivalence of states is transitive when machine is fully
specified

But its not transitive when don't cares are present

e.g., state output
S0 X 0 S1 is compatible with both S0 and S2
S1 1 X but S0 and S2 are incompatible
S2 X 1

16CSE370, Lecture 22

S2 X 1

Hard to determining best grouping of states to yield the
smallest number of final states

25

Minimizing FSMs isn’t always good

Two FSMs for 0->1 edge detection

17CSE370, Lecture 2225

Minimal state diagram -> not necessarily
best circuit

In Q1 Q0 Q1
+ Q0

+

0 0 0 0 0
0 0 1 0 0
0 1 1 0 0
1 0 0 0 1
1 0 1 1 1
1 1 1 1 1
– 1 0 0 0

18CSE370, Lecture 22

Q1
+ = In (Q1 xor Q0)

Q0
+ = In Q1’ Q0’

Out = Q1’ Q0

25

Minimal state diagram -> not necessarily
best circuit

In Q1 Q0 Q1
+ Q0

+

0 0 0 0 0
0 0 1 1 0

Q + Q0 1 0 0 0

0 1 1 1 0
1 0 0 0 1
1 0 1 1 1
1 1 0 0 1

1 1 1 1 1

Q1
+ = Q0

Q0
+ = In

Out = Q1’ Q0

19CSE370, Lecture 2225

A little perspective

These kinds of optimizations are what CAD(Computer
Aided Design)/EDA(Electronic Design Automation) is
ll b tall about

The interesting problems are almost always
computationally intractable to solve optimally

People really care about the automation of the design
of billion-transistor chips

20CSE370, Lecture 2225

