CSE 370 Lecture 3

Wrapping up 2's Complement. Starting Boolean Algebra.

Lecture 2 Recap:

- Hexadecimal has 16 symbols, Decimal 10, Octal 8, Binary has 2
- •Learnt the kung-fu required to switch between bases
- •Binary in digital systems:
 - •Finite and Fixed word length
 - •How do we decide on a word length for our system?
 - •Log₂ x = No. of bits we will need
- •What about Negative Numbers?
- •Sign Magnitude
- One's complement
- •2's complement

4/4/2008 CSE 370: Lecture 3

Some Observations about 2's complement

- Range: 2^{N-1} to 2^{N-1} -1
- The weird number: most negative number
- Trick: Fast way to do 2's complement

Major topic: Combinational logic

- Axioms and theorems of Boolean algebra
- Logic functions and truth tables
 AND, OR, Buffer, NAND, NOR, NOT, XOR, XNOR
- Gate logic
 - Networks of Boolean functions
- Canonical forms
 - Sum of products and product of sums
- Simplification
 - Boolean cubes and Karnaugh maps
 - Two-level simplification

4/4/2008 CSE 370: Lecture 3

Boolean Logic/Algebra

- Notation for writing down precise logical statements (in propositional logic)
- Primitives: true, false, variables
- Connectives: NOT, AND, OR, IMPLIES, ...
- (Almost) all memoryless digital circuits can be seen as Boolean algebra expressions
- Understanding Boolean logic helps us design "simpler" circuits, both by hand and automatically
- ((A AND B) OR (NOT A AND B)) AND A
- Equivalent to: A AND B

Boolean algebra

- A Boolean algebra comprises...
 - A set of elements B
 - Binary operators {+, •}
 - A unary operation { ' }
- ...and the following axioms
 - 1. The set B contains at least two elements {a b} with a ≠ b
 - 2. Closure: a+b is in B a•b is in B
 - 3. Commutative: a+b=b+a $a \cdot b=b \cdot a$
 - 4. Associative: a+(b+c)=(a+b)+c $a\bullet(b\bullet c)=(a\bullet b)\bullet c$
 - 5. Identity: a+0 = a a•1 = a
 - 6. Distributive: $a+(b \cdot c)=(a+b) \cdot (a+c)$ $a \cdot (b+c)=(a \cdot b)+(a \cdot c)$
 - 7. Complementarity: a+a'=1 a•a'=0

4/4/2008 CSE 370: Lecture 3

Digital (binary) logic is a Boolean algebra

- Substitute
 - {0, 1} for B
 - AND for Boolean Product
 - OR for + Boolean Sum
 - NOT for '
- All the axioms hold for binary logic
- Definitions
 - Boolean function
 - \checkmark Maps inputs from the set $\{0,1\}$ to the set $\{0,1\}$
 - Boolean expression
 - ∠ An algebraic statement of Boolean variables and operators

AND, OR, Not

XY

4/4/2008

CSE 370: Lecture 3

Logic functions and Boolean algebra

◆ Any logic function that is expressible as a truth table can be written in Boolean algebra using +, •, and '

Χ	Υ	Ζ	Z=
0	0	0	
0	1	0	
1	0	Ŏ	
1	1	1	

Χ	Υ	X' 1 1 0	Ζ	Z=
0	0	1	0	
0	1	1	1	
0 0 1	0	0	0	
1	1	ñ	n	

	Χ	Υ	X'	Y'	X • Y	X' •Y' 1 0 0 0	Z	Z
•	0	0	1	1	0	1	1	
	0	1	1	0	0	0	0	
	1	0	0	1	0	0	0	
	1	1	0	0	1	0	1	

4/4/2008

CSE 370: Lecture 3

Two key concepts

- Duality (a meta-theorem— a theorem about theorems)
 - All Boolean expressions have logical duals
 - Any theorem that can be proved is also proved for its dual
 - Replace: with +, + with •, 0 with 1, and 1 with 0
 - Leave the variables unchanged
- de Morgan's Theorem
 - Procedure for complementing Boolean functions
 - Replace: with +, + with •, 0 with 1, and 1 with 0
 - Replace all variables with their complements

4/4/2008 CSE 370: Lecture 3

Useful laws and theorems

Identity: X + 0 = Dual: $X \cdot 1 =$ Null: $X \cdot 1 =$ Dual: $X \cdot 0 =$

Idempotent: X + X = Dual: $X \cdot X =$

Involution: (X')' =

Complementarity: X + X' = Dual: $X \cdot X' =$ Commutative: X + Y = Dual: $X \cdot Y =$ Dual: $X \cdot Y =$ Dual: $(X \cdot Y) \cdot Z =$

Distributive: $X \bullet (Y+Z) = Dual: X+(Y \bullet Z) =$

Uniting: $X \bullet Y + X \bullet Y' = X$ Dual: $(X+Y) \bullet (X+Y') = X$

Useful laws and theorems (con't)

Absorption: $X+X\bullet Y=X$ Dual: $X\bullet (X+Y)=X$

Absorption (#2): $(X+Y') \bullet Y = X \bullet Y$ Dual: $(X \bullet Y') + Y = X + Y$

de Morgan's: $(X+Y+...)'=X'\bullet Y'\bullet...$ Dual: $(X\bullet Y\bullet...)'=X'+Y'+...$

Duality: $(X+Y+...)^D=X\bullet Y\bullet...$ Dual: $(X\bullet Y\bullet...)^D=X+Y+...$

Multiplying & factoring: $(X+Y) \cdot (X'+Z) = X \cdot Z + X' \cdot Y$

Dual: $X \bullet Y + X' \bullet Z = (X + Z) \bullet (X' + Y)$

Consensus: $(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) = X \bullet Y + X' \bullet Z$

Dual: $(X+Y) \bullet (Y+Z) \bullet (X'+Z) = (X+Y) \bullet (X'+Z)$

4/4/2008 CSE 370: Lecture 3 11

Proving theorems

◆ Example 1: Prove the uniting theorem-- X•Y+X•Y'=X

◆ Example 2: Prove the absorption theorem-- X+X•Y=X

Logic simplification

- Use the axioms to simplify logical expressions
 Why? To use less hardware
- ◆ Example: A two-level logic expression Z = A'BC + AB'C' + ABC' + ABC' + ABC