CSE 370 — Winter 2008

Homework 5 — Solutions

1) Carry Look-Ahead Adder (CLA)

a)addl
I
A_f’_—'i_—h\". O B G
AR /
BB
1]\
|) >* >P
==
L1 \ 5
|
: | L Sum
C_inl® 9
b) add4
U1 U3
A(3:0) D— Al0] A l,—GlO] A, sl G
B[0] 5 o|,—_PIOl B2 |, . P[2]
B(3:0)[>— c_in[0] e sl SUMO - Cin[2] | | Sum[Z]
C_in(3:0) 19— add1 add
—= Sum(3:0) . V2 V4
Al1] A alh,—G0L A8 1 I
—> P(3:0) Bl |, PN BB |, P[3]

_DG{SU) 'ﬂ'—c_in Sum [+ Sum[1]= =C—in[3] '

add1 add1

Sum[3]

C_in Sum

c)clad

3—9—D BlockP

PEOB= —D C_out(3:0) . Gl
G(3.00 - SORT
C_in> V> P Coutl0] . _ P2l ip
. Gl Glo]_1p
' Pl 11
Cin n W,_
PIO] g P |
C_in 13
el 2 POl
I1 _OC_OU t[2] P[1] I1
G[O] 1 | 5 - l.
Pl o | L
n o PO
C_in | o
PIO] 1) o .#f_
.M D o

P 1o

_ 63

G[2] 11
P31 1p

_GM i
Pl2] 11

LPBEL 1o

S (S K
LPOL i
Pl2] 11

L PRI 1

BlockG

d)clal6

Ug
A(15:0) D>— cin |
——C in BlockG —=
Gx[3:0]
B(15:0) =~ el 5(3:0) BlockP [+—=
. -—LL'-PK 30 P(3:0) C_c:uh:?r:D]--’—LLICK 30
C_in[>—
clad
— Sum(15:0) U2
U1
= X0} = C_in BlockG Sx{0]
A[3:0] _ Fx[0]
e A(3:0) G(3:0) = G(3:0) BlockP
-—B@]—'—E{B:D] P(3:0) =+ = P(30) C out3:0)
CinG0) Sum(30) - Sum[3:0]
in(3: umi(3:0) -
- o clad
4
U4
U3 O] —C in BlockG *ﬂ-
AlT:4] o Px[1]
W'-AKB:DJ G(3:0) =1 G(3:0) BlockP
IA!—E{?»:D] P(3:0) = P(3:0) C_outi3:0)
C in(30) Sum(3:0) Sumf72] clad
4
U6
U5
= £x(2] HC_in BlockG G2
ATLS A{3:0) G(3:0) = G(3:0) BlockP P
M‘-E{B:D] P{3:0) FPE30) C oul30)
S in30) sum@ED) LSum[’l’l:Bl
’ in(3: um(3:0)
- o clad
add4 -2
i = Sl HC_in BlockG S E
Al 12 A{3:0) G(3:0) = = 5(3:0) BlockP P
B[15:12] _ _ _
Bt B (3:0) P(3:0) =1P(3:0) C outi3:0)
e a0y sumeo) Sum[15:12]
’ in(3: um(3:0)
- o clad
melal

L= L= L= i

e)

Gate Count: 118 gates

addl: 3 gates

add4: 4*Addl =12 gates

clad : 14 gates

clal6: (4*Add4) + (5*Clad) = 48 + 70 218 gates

Delay:

Look at the schematic f@addl6above. The A and B inputs first go throuaghd4 blocks

In theadd4, they produce the P and G signals. This takeseldgay. They also produce
a sum; however the carry input to the gate produttie sum hasn'’t arrived yet. So we do
not consider the sum now.

The P and G signals produced by aug4 block, say Ul, goes into @da4 U2. In the
cla4, it takes 2 gate delays to produce a blockP abtbekG. Thecla4 also produces
carry output bits, however the carry in require@¢dmpute the cout hasn't arrived yet. So
we do not consider the cout now.

The blockP’s and blockG’s from tlea4’s U2, U4, U6 and U8 are available at the same
time. These are fed to thda4 - U9. In U9, the Carry in is available and hente i

computes the cout bits. In the worst case, it takgate delays to do this. The blockP and
blockG output of U9 is available at this time (Segdelays for BlockP and G signals).

The carry bits produced by U9 are fed back oital’s U2, U4, U6 and U8. Only now are
the carry in bits available to these four blockenee now we consider the cout of these
blocks. It takes 2 gate delays to produce the bitsiin the worst case.

These cout bits act as the carry in bits for theddalocks U1, U3, U5 and U7. Only now
have its carry in bits arrived. So now we can cd@&sthe sum. From the time the carry in
bit arrives it takes only 1 gate delay to compine sum output. The other input to the
XOR gate was computed long before and hence weadowvorry about the gate it
traverses through.

Total: 1+2+2+2+1 = 8 gate delays.
f) Yes.

A cla64 would simply have £lal6’s and use Xla4 that takes the blockG and blockP
signals from the&lal6’sto generate the carry inputs for each ofdlad 6's

Gate Count: (4*clal6) + clad = 486
Delay: 5 gate delays for blockP and blockGat16 (see above). 2 gate delays in the
cla4 to produce the carry in for the clal6’s. Otioe clal6 has its carry input it takes

only 5 gate delays to produce the sum as its lewi &G has already been computed.

Total: 5+2+5 =12

2)

a) The first stage of the carry save adder (CSAcansists of 16 full adders (FA). Call
the inputs of the'l FA A, B', G, and the outputs Surand G.(. Then the CSA i
component makes the following (very straightforwardnnections to the 16 FAs:

Alil < A

Bl] ©B
Sum[i] & Sum
Carry[i] < Cout

The following answers make use of a component [skich denotes a left shift by one
bit. Normally one would accomplish this by setti@fL5:1] = [[14:0], O[0] = GND.

1(15:0) >
1014] 11I[13] [I[12] |I[11] 0107 (1091 (81 (71 It61 |51 |41 |I31 (2] (i1 (1ol Jj;GND

t t

0 o} (6] (@] e} 0 o 0
o[15]o[1410[1310[12]0[1 110110]0[9] |oM8] |o[71 [ole] |or5] [of4] |o13] |of21 [or oo D 0(15:0)
b)
A S
—1 A(15:0) Carry(15:0) P—r1 << P—+{A(15:0) Sum(15:0)
B
———1B(15:0) Sum(15:0) | — B(15:0)
C
= C(15:0) »{C_in
csal6 add16

GND

1

A(15:0) Camy(15:0)

A(15:0) Carmy(15:0) { A(15:0) Camy(15:0) { 1A(15:0) Camy(15:0) A('IS:O) Sum(15:0)
B(15:0) Sum(15:0) - B(15:0) Sum(15:0) B(15:0) Sum(15:0) 1 B(15:0) Sum(15:.0) 1 +— B(15:0)
C(15:0) — C(15:0) —— C(15:0) 1 C(15:0) C_in
C csalb csalb csalb csalb add16
_L_GND
b =
-E—»—A(15;0) Camy(15:0) << H— A(15:0) Camy(15:0) <<
IBU&G) Sum(15:0) B(15:0) Sum(15:0)
F C(15:0) C(15:0)
G csal6 csalb
H

3)
a) makepg addl block with just P and G outputs. Or you &rse addl just leaving Sum output unconnected.
b) make4pg:same concept as above, applied to add4.
c) S =PXORG,;Co=G + PG,
d) 16 bit adder: This architecture is called a cakip &r a carry bypass adder.

Simply chain together 4 of the ones in the question

B G B G PG Fy Gy S
- 1Fahs
I S S IV RO : no n oo .

P G
G Cep i ' BP-PP.P

FA | Fa | EA = Es L A = T ' WG R G
T LI Iy T A B TR S O R M O Y

=

e) Why this architecture is faster:
Consider you did not use the multiplexers. Then geiua standard ripple carry. It would look likésth

R y b i L t 1 3) ' L b b)l G s L b o G " L
Pt o4 v | b i tt 4 i i Pt 4 K| LK tt 44 $I_++
L Cu L G g Li Ca Cox L (i Lu C L, Lot ..

P O U "1 O A O NS W I Ry Y Y R T I T Y R NI N T Y I Y SR I

=

=]
-
e
i
I
£

T
-
=
P
£

The worst case for the above circuit is when alftiil adders propagate. In that case we would kfaéollowing delay:

To get all P and G signals: 1 gate delay (see atitk)

Once you have P, G ang,{t takes 1 gate delay for sum output and 2 galays to get G« Remember; = G + PG,

The first full adder hence takes 3 gate delaysrtwigde its Gy Ever subsequent full-adder takes 2 gate delagacéithe final full
adder will produce its sum bit: 3 + 2*(14) +1 = §&e delays later.

Compare this to the 8 that the CLA takes. Now &taonsider the carry skip architecture.

Carry skip: Clearly, the all propagate case which is the woask for the ripple carry is not the worst casele Carry skip adder.
Because, if all propagates were true, you woulgkirhave 3 mux delays plus (3*2 + 1)gate delaygebthe final sum bit. Assuming
that the mux delay is comparable to a gate delatywould give us a total of 10 gate delays forahg@ropagate case.

f) The worst case would however be different. k& worst case,

You have a bit 0 generating, bits 1 -15 propagatinghis case the first stage does not skip theycalowever stages 2 and 3 skip it
leading into the final stage where the carry ripteproduce a sum bit. Hence you have,

1 gate delays for thefrom bit 0. Then 3*2 = 6 gate delays for the FAKhits 1-3. Then 3 gate delays to go through the 3
multiplexers. And finally (3*2 +1); 7 gate delaysdet the final sum bit.

This gives a total of 17 gate delays.

If more than one stage had a generate that wastkreie you would get parallel computation of suns m more than one stage and
hence would definitely be faster than the above.cas

Compared to 32 gate delays for the ripple carmyryeskip is twice as fast. Plus you only need Vétle additional logic to implement
it. The CLA is twice as fast as the Carry skip. Buteeds much more logic. Hence, there is a trffdbetween logical complexity and
the speed you can achieve.

g) Input sequence to trigger this worst case:

As it was suggested above, you want bit-0 to geegehét 1-15 to propagate. This might happen infthlewing configuration:

A: 0000000000000001 in1or0
B:1111111111111111

There are several other input combinations thassbamw the above behavior.

