Overview

- Last lecture
- Introduction to finite-state machines
\Rightarrow Example: A sequence detector FSM
\Leftrightarrow Example: A vending machine FSM
- Today
- A bigger example
\Rightarrow Ant-brain FSM

Ant in a maze

- Electronic ant, electronic maze
- Design the ant

Example: ant brain (Ward, MIT)

- Sensors: L and R antennae, 1 if in touching wall
- Actuators: F - forward step, TL/TR - turn left/right slightly
- Goal: find way out of maze
- Strategy: keep the wall on the right

Example: ant brain (special case 1)

- Left (L) Antenna touching the wall

Example: ant brain (special case 2)

- Ant Lost

CSE370, Lecture 22

Example: ant brain (special case 2)

- Ant Lost (another example

Ant behavior

CSE370, Lecture 22

Goal: Find a way out of maze

- Sensors on L and R antennae
- Sensor = " 1 " if touching wall; " 0 " if not touching wall
\Rightarrow L'R' \equiv no wall
\Rightarrow L'R \equiv wall on right
$\Rightarrow L R^{\prime} \equiv$ wall on left
$\star L R \equiv$ wall in front
$\Rightarrow * * * \equiv$ exit
- Movement:
- $\mathrm{F} \equiv$ forward one step
- $\mathrm{TL} \equiv$ turn left 90 degrees
- $\mathrm{TR} \equiv$ turn right 90 degrees

Notes \& strategy

- Notes
- Maze has no islands
- Corridors are wider than ant
- Don't worry about startup

■ Assume a Moore machine

- Assume D flip-flops
- Strategy
- Partition your design into datapath and control
- Keep the wall on the right

The ant's behavior

CSE370, Lecture 22

The maze

- Virtual maze
- 128×128 grid
\Rightarrow Stored in memory
$\Rightarrow 163848$-bit words
- $Y X$ is maze addresses
$\Rightarrow X$ is the ant's horizontal position (7 bits)
$\Rightarrow Y$ is the ant's vertical position (7 bits)
- Each memory location says
$\Rightarrow 00000001 \equiv$ No wall
$\Rightarrow 00000010 \equiv$ North wall
$\Rightarrow 00000100 \equiv$ West wall
$\Rightarrow 00001000 \equiv$ South wall
$\Rightarrow 00010000 \equiv$ East wall
Can have multiple walls
Example: 00001100
\Rightarrow Walls on South and East

Where do you start???

Don't look ahead

What you need

- An FSM for the ant
- 3 outputs
\Rightarrow Go forward
\Rightarrow Turn left
\Rightarrow Turn right
- Two 7-bit registers for X and Y
- With preload, increment, decrement
- A register to hold the ant's heading
- Logic to convert memory data to antennae info

Recommendations

- 7-bit counters for X, Y
- Move horizontally: Increment or decrement X
- Move vertically: Increment or decrement Y
- Shift register for heading
- N: 0001
- W: 0010
- S: 0100
- E: 1000
- Rotate right when ant turns right
- Rotate left when ant turns left
- Combinational logic for antennae decoder

Partition the design

Design the ant-brain FSM

1. State diagram and state-transition table
2. State minimization
3. State assignment (or state encoding)
4. Minimize next-state logic
5. Implement the design

Step 1a: State diagram

Step 1b: State-transition table

Exit	State	L R	Next State	Output
1	Reset			
0	S0	00	S0	F
		01	S1	F
		10	S3	F
		11	S3	F
0	S1	00	S2	F
		01	S1	F
		10	S3	F
		11	S3	F
0	S2	00	S0	TR
		01	SO	TR
		10	S0	TR
		11	S0	TR
0	S3	00	S1	TL
		01	S1	TL
		10	S3	TL
		11	S3	TL

Step 2: State minimization

- Two states are equivalent if they cannot be distinguished at the outputs of the FSM
- The outputs are the same for any input sequence
- Two conditions for two states to be equivalent

1) Outputs must be the same in both states
2) Machine must transition to equivalent states for all inputs

- Any equivalent states in our state diagram?

Step 3: State encoding

Exit	X Y	L	R	X	Y	F	TL		
1	Reset								$\begin{aligned} & \mathrm{S} 0 \rightarrow 00 \\ & \mathrm{~S} 1 \rightarrow 01 \\ & \mathrm{~S} 2 \rightarrow 10 \\ & \mathrm{~S} 3 \rightarrow 11 \end{aligned}$
	00	0	0	0	0	1	0	0	
	00	0	1	0	1	1	0	0	
	00	1	0	1	1	1	0	0	
	00	1	1	1	1	1	0	0	
0	01	0	0	1	0	1	0	0	
	01	0	1	0	1	1	0	0	
	01	1	0	1	1	1	0	0	
	01	1	1	1	1	1	0	0	
0	10	0	0	0	0	0	0	1	
	10	0	1	0	0	0	0	1	
	10		0	0	0	0	0	1	
	10	1	1	0	0	0	0	1	
0	11	0	0	0	1	0	1	0	
	11	0	1	0	1	0	1	0	
	11	1	0	1	1	0	1	0	
	11	1	1	1	1	0	1	0	

Step 4: Minimize the logic

CSE370, Lecture 22

Step 5: Implement the design

Antennae logic

- Each memory location says
$\Rightarrow 00000001 \equiv$ No wall
$\Rightarrow 00000010 \equiv$ North wall (NW)
$\Rightarrow 00000100 \equiv$ West wall (WW)
$\Rightarrow 00001000 \equiv$ South wall (SW)
$\Rightarrow 00010000 \equiv$ East wall (EW)
$\Rightarrow 00100000 \equiv$ Exit
- The ant can be heading
\Rightarrow N: 0001
\Rightarrow W: 0010
\Rightarrow S: 0100
\Rightarrow E: 1000

Gate count:
4 2-input ORs
8 2-input ANDs
2 4-input ORs

Logic for right antennae

$$
\begin{aligned}
R= & N W(N+W)+ \\
& W W(W+S)+ \\
& S W(S+E)+ \\
& E W(E+N)
\end{aligned}
$$

Logic for left antennae
$L=N W(N+E)+$ $W W(W+N)+$ $S W(S+W)+$ $E W(E+S)$

What we left out...

- Crumbs in cell
- Ant eats crumbs in every cell it visits
- Writes crumb file back to SRAM
- Read crumb file, for future display on monitor
- Need a memory controller
- A state machine to talk to the SRAM
- Need to deal with startup, exit states!

Extra Credit:

- Design the memory controller:

- Due last day in class, Friday, March 14; printouts only
- Value: up to 1 quiz
- Graded on clarity and completeness of explanation
- No questions will be answered

