Canonical forms for Boolean logic

- Algebraic expressions to gates (lab 1)
- Canonical forms
- Incompletely specified functions
- Realizing two-level canonical forms

NAND, NOR, and de Morgan's theorem

- de Morgan's
- Standard form: $\quad A^{\prime} B^{\prime}=(A+B)^{\prime} \quad A^{\prime}+B^{\prime}=(A B)^{\prime}$
- Inverted:
$A+B=\left(A^{\prime} B^{\prime}\right)^{\prime}$
$(A B)=\left(A^{\prime}+B^{\prime}\right)^{\prime}$
- AND with complemented inputs = NOR
- OR with complemented inputs = NAND
- OR = NAND with complemented inputs
- AND = NOR with complemented inputs

Random logic

- Too hard to figure out exactly what gates to use
- map from logic to NAND/NOR networks
- determine minimum number of packages
- slight changes to logic function could decrease cost
- Changes too difficult to realize
- need to rewire parts
- may need new parts
- design with spares (few extra inverters and gates on every board)
- Need higher levels of integration to keep costs down
- cost directly related to number of devices and their pins

Regular logic

- Need to make design faster
- Need to make engineering changes easier to make
- Simpler for designers to understand and map to functionality
- harder to think in terms of specific gates
- easier to think in terms of larger multi-purpose blocks

Canonical forms

- Truth table is the unique signature of a Boolean function
- The same truth table can have many gate realizations
- we've seen this already
- depends on how good we are at Boolean simplification
- Canonical forms
- standard forms for a Boolean expression
- we all come up with the same expression

Sum-of-products canonical forms

- Also known as disjunctive normal form
- Also known as minterm expansion

Sum-of-products canonical form (cont'd)

- Product term (or minterm)
- ANDed product of literals - input combination for which output is true - each variable appears exactly once, true or inverted (but not both)

A	B	C	minterms	
0	0	0	$\mathrm{~A}^{\prime} \mathrm{B}^{\prime} C^{\prime}$	m 0
0	0	1	$\mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$	m 1
0	1	0	$A^{\prime} \mathrm{BC}^{\prime}$	m 2
0	1	1	$A^{\prime} \mathrm{BC}^{\prime}$	m 3
1	0	0	$\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$	m 4
1	0	1	$\mathrm{AB}^{\prime} \mathrm{C}$	m 5
1	1	0	$A B C^{\prime}$	m 6
1	1	1	ABC	m 7
short-hand notation for				

$$
\begin{aligned}
\text { F in canonical form: } \\
\begin{aligned}
F(A, B, C) & =\Sigma m(1,3,5,6,7) \\
& =m 1+m 3+m 5+m 6+m 7 \\
& =A^{\prime} B^{\prime} C+A A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C \\
\text { canonical form } & \neq \text { minimal form } \\
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C+A B C^{\prime} \\
& =\left(A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime}+A B\right) C+A B C^{\prime} \\
& =\left(\left(A^{\prime}+A\right)\left(B^{\prime}+B\right)\right) C+A B C^{\prime} \\
& =C+A B C^{\prime} \\
& =A B C^{\prime}+C \\
& =A B+C
\end{aligned}
\end{aligned}
$$

Product-of-sums canonical form

- Also known as conjunctive normal form
- Also known as maxterm expansion

Product-of-sums canonical form (cont'd)

- Sum term (or maxterm)
- ORed sum of literals - input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

A	B	C	maxterms		F in canonical form:	
0	0	0	A+B+C	M0		
0	0	1	$\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}$	M1		$=\mathrm{M} 0 \cdot \mathrm{M} 2 \cdot \mathrm{M} 4$
0	1	0	$\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}$	M2		$=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
0	1	1	$\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}$	M3		
1	0	0	$\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}$	M4	canonical form \neq minimal form	
1	0	1	$A^{\prime}+B+C^{\prime}$	M5	F(A, B, C)	$=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
1	1	0	$A^{\prime}+B^{\prime}+C$	M6		$=(A+B+C)\left(A+B^{\prime}+C\right)$
1	1	1	$A^{\prime}+B^{\prime}+C^{\prime}$			$\begin{aligned} & (A+B+C)\left(A^{\prime}+B+C\right) \\ = & (A+C)(B+C) \end{aligned}$

S-o-P, P-o-S, and de Morgan's theorem

- Complement of function in sum-of-products form
- $F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$
- Complement again and apply de Morgan's and get the product-of-sums form
- $\left(F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}$
- $F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
- Complement of function in product-of-sums form
- $F^{\prime}=\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)$
- Complement again and apply de Morgan's and get the sum-of-product form
- $\left(F^{\prime}\right)^{\prime}=\left(\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\right)^{\prime}$
- $F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C$

Mapping between canonical forms

- Minterm to maxterm conversion
- use maxterms whose indices do not appear in minterm expansion
- e.g., $F(A, B, C)=\Sigma m(1,3,5,6,7)=\Pi M(0,2,4)$
- Maxterm to minterm conversion
- use minterms whose indices do not appear in maxterm expansion
- e.g., $F(A, B, C)=\Pi M(0,2,4)=\Sigma m(1,3,5,6,7)$
- Minterm expansion of F to minterm expansion of F^{\prime}
- use minterms whose indices do not appear
- e.g., $F(A, B, C)=\Sigma m(1,3,5,6,7) \quad F^{\prime}(A, B, C)=\Sigma m(0,2,4)$
- Maxterm expansion of F to maxterm expansion of F^{\prime}
- use maxterms whose indices do not appear
- e.g., $F(A, B, C)=\Pi M(0,2,4) \quad F^{\prime}(A, B, C)=\Pi M(1,3,5,6,7)$

Waveforms for the four alternatives

- Waveforms are essentially identical
- except for timing hazards (glitches)
- delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate)

Incompleteley specified functions

- Example: binary coded decimal increment by 1
- BCD digits encode the decimal digits 0-9 in the bit patterns $0000-1001$

A	B	C	D	W	X	Y	Z	
0	0	0	0	0	0	0	1	
0	0	0	1	0	0	1	0	
0	0	1	0	0	0	1	1	
0	0	1	1	0	1	0	0	
0	1	0	0	0	1	0	1	
0	1	0	1	0	1	1	0	off-set of W
0	1	1	0	0	1	1	1	don't care (DC) set of W
0	1	1	1	1	0	0	0	
1	0	0	0	1	0	0	1	these inputs patterns should
1	0	0	1	0	0	0	0	never be encountered in practice
1	0	1	0	X	X	X	X	"don't care" about output values
1	0	1	1	X	X	X	X	in these cases - might be useful
1	1	0	0	X	X	X	X	in minimization
1	1	0	1	X	X	X	X	

Notation for incompletely specified functions

- Don't cares and canonical forms
- so far, only represented on-set
- also represent don't-care-set
- need two of the three sets (on-set, off-set, dc-set)
- Canonical representations of the BCD increment by 1 function:
- Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
- $Z=\Sigma[m(0,2,4,6,8)+d(10,11,12,13,14,15)]$
- $Z=M 1 \cdot M 3 \cdot M 5 \cdot M 7 \cdot M 9 \cdot D 10 \cdot D 11 \cdot D 12 \cdot D 13 \cdot D 14 \cdot D 15$
- $Z=\Pi[M(1,3,5,7,9) \cdot D(10,11,12,13,14,15)]$

