Today

- Simplification
 - Practical use of DeMorgan's Theorem
 - Methodology
- Logic Gates
 - Equivalencies, Cost, and Notation
 - Multiple Input Semantics
- Effective DesignWorksing

DeMorgan and "Break the Bar"

- Motivation: Inversion of Entire Functions
- Heuristic: When simplifying, eliminate multivariable negations 1st
- **Example:** Simplify the following equation:

$$f(a,b) = \overline{ab}$$
$$f(a,b) = \overline{a} + \overline{b}$$

$$f(a,b) = a + b$$

DeMorgan's Law

"Break the Bar" Example 1

Simplify the following equation:

$$f(x, y, z) = \overline{xy} + \overline{xz}$$

$$f(x, y, z) = \overline{xy} \bullet \overline{xz}$$
DeMorgan's Law
$$f(x, y, z) = (\overline{x} + \overline{y})(x + \overline{z})$$
DeMorgan's Law
$$f(x, y, z) = (\overline{x} + \overline{y})(x + \overline{z})$$
Involution

"Break the Bar" Example 2

Simplify the following equation:

$$f(x, y, z) = \overline{xy} + \overline{z} + x\overline{yz} + x\overline{yz}$$

$$= \overline{z} + x\overline{yz} + x\overline{yz}$$

$$f(x, y, z) = xy \bullet \overline{z} + x\overline{yz} + x(\overline{y} + \overline{z})$$
DeMorgan's Law
$$f(x, y, z) = xy\overline{z} + x\overline{yz} + x(\overline{y} + \overline{z})$$
Involution
$$f(x, y, z) = xy\overline{z} + x\overline{yz} + x\overline{yz} + x\overline{z}$$
Distributive

Minimization "Cost"

- Dependant on target technology (CMOS)
- Possible Metrics: delay, integration, power, size, noise, \$\$, and driving capability
- Issues
 - How do I minimize automatically?"
 - I "How do I know something is minimized?"
- Better Algorithms
 - Boolean Cubes
 - Karnaugh Maps
 - Quine-McKlusky Algorithm

Logic Gates

- Equivalencies and Notation
 - Understanding vs. Technology Mapping
 - Converting to NAND (or NOR) only circuits

$$f(a,b,c) = ab + c$$

- Multiple Inputs
 - "Fan-in" (vs. "Fan-out")
 - I Syntax and Semantics (AND, OR, XOR)

Waveforms and Behavior

- Propagation Delay
 - Analog World
 - Scoped to many levels
- Highly Variable
 - Don't count on any particular behavior
 - Published Upper and Lower Bounds

Effective DesignWorksing

- Draw a schematic for the following in DesignWorks:
 - Standard Wiring
 - Self-imposed regular structures

$$f(x, y, z) = \overline{xy} + xy + x\overline{y}$$