Today

- Timing in DesignWorks
\| Generating Useful Output
\| Gate Delay Properties
II Notes on Multiplexers as general-purpose logic
- Demultiplexers versus Decoders
- BCD to 7-segment display decoder example
- Hardware Demonstration

Timing in DesignWorks: Generating useful output

-	Input Vector						[10]\|
	Waveform Output	5 5reo Wat metem					
-	Refer to tips page for How-To	-\%	ch^{1}	7 7 \% ${ }^{\text {c }}$	19, ${ }^{\text {c }}$	400°	5
		${ }^{1} \frac{1}{1} \frac{0}{3}$					
		- ${ }^{3}$	1	$\frac{5}{4}$	b		
			1	1	\bigcirc		
		${ }^{-3}$?			
			;				
		In \%rus				i	
		2					
				$\sqrt{2}$			
, 1							
CSE 370 - April 19, 1999 Section - 2							

Timing in DesignWorks: Gate Delay Properties

I. Adjust the overall delay time of the primitive device
ll Show all fields in the device attributes
\| Set Delay.Dev to an integer delay value
\| Delay.Dev.(Typ/Min/Max) are information storage only and not interpreted by DesignWorks
\| Delay.Pin is not the device delay

- 1 is the default
- 0 possible but hard to reason about

3

Notes on Multiplexers as general-purpose logic

- A $2^{n-1}: 1$ multiplexer can implement any function of n variables
$\|$ with $n-1$ variables used as control inputs and
$\|$ the data inputs tied to the last variable or its complement
II Example:
|| $F(A, B, C)=m 0+m 2+m 6+m 7$

$$
=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B C^{\prime}+A B C
$$

$$
=A^{\prime} B^{\prime}\left(C^{\prime}\right)+A^{\prime} B\left(C^{\prime}\right)+A B^{\prime}(0)+A B(1)
$$

Notes on Multiplexers as general-purpose logic (cont'd)

- Sometimes it can be reduced even further to a $2^{n-k}: 1$ multiplexer ($k>1$) but there is no standard method to determine this.
- $F(A, B, C)=m 0+m 2+m 6+m 7$

$$
=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B C^{\prime}+A B C
$$

$$
=A^{\prime} B^{\prime}\left(C^{\prime}\right)+A^{\prime} B\left(C^{\prime}\right)+A B^{\prime}(0)+A B(1)
$$

$$
=A^{\prime}\left(C^{\prime}\right)+A(B)
$$

Demultiplexers versus Decoders

- Demultiplexers are simply the most general class of Decoder with a full AND array.
- In general

I any form of partial AND array
\| mapping of m inputs to n outputs where $n>m$.

BCD to 7-segment display controller

- Example will be covered again and in greater detail in lecture
- Understanding the problem

I input is a 4 bit bcd digit ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$)
$\|$ output is the control signals for the display (7 outputs C0-C6)

- Block diagram:

Formalize the problem

- Truth table

Il show don't cares

- Implementation procedure

II minimization using K-maps
\| map to hardware of some type

A	B	C	D	C0	C1 1	C2	C3	C4	C5	C6
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	-	-	-	-	-	-	-	-
1	1	-	-	-	-	-	-	-	-	-

Implementation as minimized SOP

-1 15 unique product terms when minimized individually

$$
\begin{aligned}
& C 0=A+B D+C+B^{\prime} D^{\prime} \\
& C 1=C^{\prime} D^{\prime}+C D+B^{\prime} \\
& C 2=B+C^{\prime}+D \\
& C 3=B^{\prime} D^{\prime}+C D+B D^{\prime}+B+B^{\prime} C \\
& C 4=B^{\prime} D^{\prime}+C D^{\prime} \\
& C 5=A+C^{\prime} D^{\prime}+B D^{\prime}+B C^{\prime} \\
& C 6=A+C D^{\prime}+B C^{\prime}+B^{\prime} C
\end{aligned}
$$

Implementation as minimized SOP (cont'd)

- Can do better than minimized

I 9 unique product terms (instead of 15)
\| share terms among outputs, good for PLAs
\| each output not necessarily in minimized form

$C 0=A+B D+C+B^{\prime} D^{\prime}$
$C 1=C^{\prime} D^{\prime}+C D+B^{\prime}$
$C 2=B+C^{\prime}+D$
$C 3=B^{\prime} D^{\prime}+C D^{\prime}+B C^{\prime} D+B^{\prime} C$
$C 4=B^{\prime} D^{\prime}+C D^{\prime}$
$C 5=A+C^{\prime} D^{\prime}+B D^{\prime}+B C^{\prime}$
$C 6=A+C D^{\prime}+B C^{\prime}+B^{\prime} C$

$C 0=B C^{\prime} D+C D+B^{\prime} D^{\prime}+B C D^{\prime}+A$
$C 1=B^{\prime} D+C^{\prime} D^{\prime}+C D+B^{\prime} D^{\prime}$
$C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+C D+B C D^{\prime}$
$C 3=B C^{\prime} D+B^{\prime} D+B^{\prime} D^{\prime}+B C D^{\prime}$
$C 4=B^{\prime} D^{\prime}+B C D^{\prime}$
$C 5=B C^{\prime} D+C^{\prime} D^{\prime}+A+B C D^{\prime}$
$C 6=B^{\prime} C+B C^{\prime}+B C D^{\prime}+A$

Hardware Demonstration: Protoboard Layout

- Power and ground

II Distribution Channels

- Pin Connections

Hardware Demonstration: TTL Parts

II Obfuscated Technology (gates-on-a-chip)
II Motorola Specification Sheets

- The 4th Floor Beast
- Local Availability in EE1

