
CSE 370 - Spring 1999 - Verilog for Sequential Systems - 1

Today: Verilog and Sequential LogicToday: Verilog and Sequential Logic

z Flip-flops
y representation of clocks - timing of state changes
y asynchronous vs. synchronous

z Counters (State Machines)
y structural view (FFs separate from combinational logic)
y behavioral view (synthesis of sequencers)

z More Advanced Verilog Features
y $display() and $time() statements
y non-blocking (RTL) assignment

CSE 370 - Spring 1999 - Verilog for Sequential Systems - 2

module dff (CLK, d, q);

input CLK, d;
output q;
reg q;

always @(CLK)
q = d;

endmodule

Incorrect Flip-flop in VerilogIncorrect Flip-flop in Verilog

z Use always block's sensitivity list to wait for clock to change

Not correct! Q will
change whenever the
clock changes, not
just on the edge.

CSE 370 - Spring 1999 - Verilog for Sequential Systems - 3

module dff (CLK, d, q);

input CLK, d;
output q;
reg q;

always @(posedge CLK)
q = d;

endmodule

Correct Flip-flop in VerilogCorrect Flip-flop in Verilog

z Use always block's sensitivity list AND the posedge keyword to wait for
clock edge

CSE 370 - Spring 1999 - Verilog for Sequential Systems - 4

module dff (CLK, s, r, d, q);
input CLK, s, r, d;
output q;
reg q;

always @(posedge CLK)
if (r) q = 1'b0;
else if (s) q = 1'b1;
else q = d;

endmodule

module dff (CLK, s, r, d, q);
input CLK, s, r, d;
output q;
reg q;

always @(posedge r)
q = 1'b0;

always @(posedge s)
q = 1'b1;

always @(posedge CLK)
q = d;

endmodule

More Flip-flopsMore Flip-flops

z Synchronous/asynchronous reset/set
y single thread that waits for the clock
y three parallel threads – only one of which waits for the clock

SynchronousSynchronous AsynchronousAsynchronous

CSE 370 - Spring 1999 - Verilog for Sequential Systems - 5

module Ctr (CLK, in, out);
input CLK;
input in;
output out;
reg out;

 // state variable
 reg [1:0] state;

// local variable
reg [1:0] next_state;

always @(posedge CLK) // registers
state = next_state;

always @(state or in)
 // Compute next_state[1:0] logic (D inputs) whenever state/inputs change.
 // Make sure state is always assigned to in every execution path!

// assign to the outputs

endmodule

Verilog Implementation of a Counter (StateVerilog Implementation of a Counter (State
Machine)Machine)

z General view of a counter or state machine in verilog

CSE 370 - Spring 1999 - Verilog for Sequential Systems - 6

module BCDCount (CLK, clear, load, a0, a1);
 input CLK, reset, in;
 output a0, a1;
 reg a0, a1;
 reg [1:0] state; // state variables
 reg [1:0] next_state;

 always @(posedge CLK) begin
 state = next_state;
 end

 always @(state or clear or load) begin
 case (state)
 2’b00: next_state = 2’b01;
 2’b01: next_state = 2’b10;
 2’b10: next_state = 2’b11;
 2’b11: next_state = 2’b00;
 endcase
 if (clear) next_state = 2’b00;

… // handle load
 end

 assign a0 = state[0];
 assign a0 = state[1];
endmodule

VerilogVerilog BCD Counter Example BCD Counter Example

CSE 370 - Spring 1999 - Verilog for Sequential Systems - 7

$display and $time statements$display and $time statements

z Documentation in the online manual (p. 56)
z Doesn’t synthesize to anything!
z Formats similar to printf() in C

y %h Hex, %d Decimal, %o Octal, %b Binary, %% Display a “%” sign

z Examples of $display()
y $display(”output %d is %h", i, vec[i]);
y $display("%d%% completed", (count * 100) / max_count);

z The $time function returns system simulation time as a 32-bit integer
y $display("Got an event at time %d", $time);

CSE 370 - Spring 1999 - Verilog for Sequential Systems - 8

always @(posedge CLK)
begin

temp = B;
B = A;
A = temp;

end

always @(posedge CLK)
begin

A <= B;
B <= A;

end

Blocking and Non-Blocking AssignmentsBlocking and Non-Blocking Assignments

z Blocking assignments (X=A)
y completes the assignment before continuing on to next statement

z Non-blocking assignments (X<=A)
y completes in zero time and doesn’t change the value of the target

until a blocking point (delay/wait) is encountered
z Example: swap

CSE 370 - Spring 1999 - Verilog for Sequential Systems - 9

RTL AssignmentRTL Assignment

z Non-blocking assignment is also known as an RTL assignment
y if used in an always block triggered by a clock edge
y mimic register-transfer-level semantics – all flip-flops change

together
// B, C, and D all get the value of A
always @(posedge clk)
 begin
 B = A;
 C = B;
 D = C;
 end

// implements a shift operation too
always @(posedge clk)
 begin
 B <= A;
 C <= B;
 D <= C;
 end

// this implements a shift operation
always @(posedge clk)
 begin
 {D, C, B} = {C, B, A};
 end

