

DS.A. 2		
1. Why do we analyze algorithms?		
2. How do we measure the efficiency of an algorithm?		
A. Time it on my computer.		
B. Compare its time to that of another algorithm that has already been analyzed.		
C. Count how many instructions it will execute for an arbitrary input data set.		
Suppose there are \mathbf{n} inputs.		
We'd like to find a time function $\mathbf{T}(\mathbf{n})$ that shows how the execution time depends on \mathbf{n}.		
$\mathrm{T}(\mathrm{n})=3 \mathrm{n}+4$	$\mathrm{T}(\mathrm{n})=\mathrm{e}^{\mathrm{n}}$	$\mathrm{T}(\mathrm{n})=2$

"Big-Oh"
$\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$ if there are positive constants c and n 0 such that $\mathrm{T}(\mathrm{N}) \leq \mathrm{cf}(\mathrm{N})$ when $\mathrm{N} \geq \mathrm{n} 0$.
We say " $\mathrm{T}(\mathrm{N})$ has order $\mathrm{f}(\mathrm{N})$."
We try to simplify $\mathrm{T}(\mathrm{N})$ into one or more
common functions.
Ex. $1 \mathrm{~T}(\mathrm{~N})=3 \mathrm{~N}+4$ $\mathrm{~T}(\mathrm{~N})$ is linear. Intuitively, $\mathrm{f}(\mathrm{N})$ should be N. More formally, $\mathrm{T}(\mathrm{N})=3 \mathrm{~N}+4 \leq 3 \mathrm{~N}+4 \mathrm{~N}, \mathrm{~N} \geq 1$ $\mathrm{~T}(\mathrm{~N}) \leq 7 \mathrm{~N}, \mathrm{~N} \geq 1$ So $\mathrm{T}(\mathrm{N})$ is of order N.

