
Paths through Graphs
A path in a graph is a sequence of vertices
$\mathrm{w} 1, \mathrm{w} 2, \ldots, \mathrm{wN}$ such that $\{\mathrm{wi}, \mathrm{w}[\mathrm{i}+1]\}$ is
in E for $1 \leq \mathrm{i}<\mathrm{N}$.
The length of the path is $\mathrm{N}-1$, the number
of edges on the path.
A path from a node to itself with no
repeated edges is a cycle.
What are the cycles of this graph?
What are all the paths from a to f ?

$\text { DS.GR. } 14$ Graph Matching
Input: 2 digraphs $\mathrm{G} 1=(\mathrm{V} 1, \mathrm{E} 1), \mathrm{G} 2=(\mathrm{V} 2, \mathrm{E} 2)$ Questions to ask: - Are G1 and G2 isomorphic? - Is G1 isomorphic to a subgraph of G2? - How similar is G1 to G2? - How similar is G1 to the most similar subgraph of G2?

Subgraph Isomorphism for Digraphs
G1 is isomorphic to a subgraph of G2 if there
is a $1-1$ mapping $\mathrm{h}: \mathrm{V} 1 \rightarrow \mathrm{~V} 2$ such that
($\mathrm{vi}, \mathrm{vj}) \in \mathrm{E} 1 \Rightarrow(\mathrm{~h}(\mathrm{vi}), \mathrm{h}(\mathrm{vj})) \in \mathrm{E} 2$

Error of a Mapping			
Intuitively, the error of mapping h tells us - how many edges of G1 have no corresponding edge in G2 and - how many edges of G2 have no corresponding edge in G 1 .			
Let $\mathrm{Gl}=(\mathrm{V} 1, \mathrm{E} 1)$ and $\mathrm{G} 2=(\mathrm{V} 2, \mathrm{E} 2)$, and let $\mathrm{h}: \mathrm{V} 1 \rightarrow \mathrm{~V} 2$ be a 1-1, onto mapping.			
forward error	$\begin{aligned} & \mathrm{EF}(\mathrm{~h})=\\|(\mathrm{vi}, \mathrm{vj}) \\ & \mathrm{edge} \text { in } \mathrm{E} 1 \end{aligned}$	$h(\mathrm{vj}) \notin E 2\}$ edge not in E2	
backward error	$\begin{aligned} & \mathrm{EB}(\mathrm{~h})=\\|(\mathrm{vi}, \mathrm{vj}) \\ & \text { edge in E2 co } \end{aligned}$	$h^{-1}(\mathrm{~h}$,h $(\mathrm{vj})) \notin \mathrm{E} \mid\} \mid$ edge not in E1	
total error	Error(h) $=$ EF		
relational distance	$\begin{aligned} & \mathrm{GD}(\mathrm{G} 1, \mathrm{G} 2)= \\ & \quad \text { for all } 1-1, \text { on } \end{aligned}$		

