
1

DS.GR.1

Graph Algorithms

Chapter 9 Overview

• Definitions

• Representation

• Topological Sort

• Graph Matching (for Program 3)

• Shortest Path Algorithms

• Network Flow Problems

• Minimum Spanning Trees

• Depth-First and Breadth-First Search

• NP-Completeness

DS.GR.2
Graphs and Digraphs

A graph is a pair G = (V,E) where

 V is a set of vertices (or nodes)
 E is a set of edges (or arcs)

Example:

 V = {a, b, c, d}

 E = { (a,b), (b,a),(a,c)
 (c,a),(b,c),(c,b)
 (c,d), (d,c),(c,c)}

or E = { {a,b}, {a,c}
 {b,c}, {c,d} {c,c} }

a b

c d

edge

vertex

An (undirected) graph represents a
symmetric relation.

DS.GR.3

A digraph G = (V,E) is a graph in which
the edges are directed from the first node
to the second.

Example:

 V = {a, b, c, d}

 E = { (a,b), (a,c), (b,c),(c,a),(c,c),(d,c) }

a b

c d vertex or node
directed
edge (or arc)

This graph represents a binary relation that
is not symmetric.

DS.GR.4

More Examples

Undirected Graph

Directed Graph

Lynnwood
Woodinville

Seattle

Tacoma

Bellevue

I5

I5

I405

I405I520

M126

142 143 321 322

326373

415EE562

DS.GR.5

Some Additional Digraph Terminology

arc A

from-node
 of A

to-node
 of A

outdegree(a) = 3
indegree(a) = 0

outdegree(c) = 0
indegree(c) = 2

a b

d c

Node a is a source; Node c is a sink.

For graphs, we just have the degree of a node.

DS.GR.6

Paths through Graphs

A path in a graph is a sequence of vertices
w1, w2, … , wN such that {wi,w[i+1]} is
in E for 1 ≤ i < N.

The length of the path is N–1, the number
of edges on the path.

a

b

c

d

e

f

A path from a node to itself with no
repeated edges is a cycle.

What are the cycles of this graph?
What are all the paths from a to f?

2

DS.GR.7

Paths through Digraphs

A path in a digraph is a sequence of vertices
w1, w2, … , wN such that (wi,w[i+1]) is
in E for 1 ≤ I < N.

The only difference is moving along directed
edges in the proper direction.

a

b

c

d

e

f

What are the cycles of this digraph?
What are all the paths from a to f?

This is an acyclic digraph.

DS.GR.8

Graph Representations

• N x N Adjacency Matrix for N node graph

Digraphs:

 1 if there is an arc from node i to
 node j
 A[i,j] =
 0 otherwise

1

3 4

2 0 1 0 0
0 1 1 0
0 0 0 1
0 1 1 0

 1 2 3 4

1
2
3
4

DS.GR.9

Graphs:

 1 if there is an edge connecting
 node i and node j
 A[i,j] =
 0 otherwise

1

3 4

2

 1 2 3 4

1
2
3
4

??

Note: since A[i,j] = 1 iff A[j,i] = 1,
we only need to store half the matrix.

DS.GR.10

Adjacency Matrices

• Are usually bit matrices, unless the graph
 has weights on the edges, in which case
 the 1-bits are replaced by the weights.

• Are used in certain algorithms that make
 use of simple matrix operations, such as
 AND and OR.

• Are inefficient for some algorithms, because

 a. They waste space when the graph is sparse

 b. You have to search a whole row to find
 those nodes adjacent to a given one.

DS.GR.11

2. Linked Representation: Adjacency Lists

 N element array of lists

V[i] points to a list of nodes that are adjacent
to node i.

For digraphs, this is usually the list of nodes
reachable by following one arc out of node i.

But, we can have another set of lists for nodes
whose arcs go into node i.

1
2
3
4

4 7

2 What does this structure
tell us for a graph?
For a digraph?

DS.GR.12

Topological Sort

Given an acyclic digraph G,
where (<<)
 (Ni,Nj) ∈ E means that Ni precedes Nj

Find an ordering of the nodes
 N1, N2, N3, . . . , Nn

so that N1 << N2 << N3 << . . . << Nn.

142

415

143 373
562 576

457
linear

algebra

Find an ordering in which all these courses
can be taken, satisfying their prerequisites.

3

DS.GR.13

Complexity of Topological Sort

Assuming the adjacency list representation,

- The indegree of each vertex is computed
 in an initialization step. |V|

- Each node will go into the queue and come
 out exactly once. |V|

- Each edge will be examined once
 (in the for loop when its from-node is
 processed. |E|

So the complexity is O(|V| + |E|).

DS.GR.14

Graph Matching

Input: 2 digraphs G1 = (V1,E1), G2 = (V2,E2)

Questions to ask:

• Are G1 and G2 isomorphic?

• Is G1 isomorphic to a subgraph of G2?

• How similar is G1 to G2?

• How similar is G1 to the most similar
 subgraph of G2?

DS.GR.15

Isomorphism for Digraphs

G1 is isomorphic to G2 if there is a 1-1, onto
mapping h: V1 → V2 such that

 (vi,vj) ∈ E1 iff (h(vi), h(vj)) ∈ E2

1 2

4 5

3

G1 G2

a b

c

d e

Find an isomorphism h: {1,2,3,4,5} → {a,b,c,d,e}.
Check that the condition holds for every edge.

DS.GR.16

Subgraph Isomorphism for Digraphs

G1 is isomorphic to a subgraph of G2 if there
is a 1-1 mapping h: V1 → V2 such that

 (vi,vj) ∈ E1⇒ (h(vi), h(vj)) ∈ E2

1

3

2 a b

c d

G1 G2

Isomorphism and subgraph isomorphism
are defined similarly for undirected graphs.

In this case, when (vi,vj) ∈ E1, either
(vi,vj) or (vj,vi) can be listed in E2, since
 they are equivalent and both mean {vi,vj}.

DS.GR.17

Similar Digraphs

Sometimes two graphs are close to isomorphic,
but have a few “errors."

1 2

4 5

3

G1 G2

a b

c

d e

Let h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5) = d.

(1,2) (b,e)
(2,1) (e,b)
 X (c,b)
(4,5) (a,d)
(2,5) (e,d)
(3,2) X
(3,4) (c,a)

(c,b) ∈ G2, but (3,1) ∉ G1

(3,2) ∈ G1, but (c,e) ∉ G2

The mapping h has 2 errors.

DS.GR.18

Intuitively, the error of mapping h tells us
- how many edges of G1 have no corresponding
 edge in G2 and
- how many edges of G2 have no corresponding
 edge in G1.

Error of a Mapping

Let G1=(V1,E1) and G2=(V2,E2), and
let h:V1→ V2 be a 1-1, onto mapping.

forward
error

backward
error

total error

relational
distance

EF(h) = |{(vi,vj)∈E1 | (h(vi),h(vj))∉E2}|
 edge in E1 corresponding edge not in E2

EB(h) = |{(vi,vj)∈E2 | (h (vi),h (vj))∉E1}|
 edge in E2 corresponding edge not in E1

Error(h) = EF(h) + EB(h)

GD(G1,G2) = min Error(h)
 for all 1-1, onto h:V1→ V2

-1 -1

4

DS.GR.19

Variations of Relational Distance

• normalized relational distance:
 Divide by the sum of the number
 of edges in E1 and those in E2.

• undirected graphs:
 Just modify the definitions of EF and EB
 to accommodate.

• one way mappings:
 h is 1-1, but need not be onto
 Only the forward error EF is used.

• labeled graphs:
 When nodes and edges can have labels,
 each node should be mapped to a node
 with the same label, and each edge should
 be mapped to an edge with the same label.

DS.GR.20
Graph Matching Algorithms

• graph isomorphism
• subgraph isomorphism
• relational distance
• attributed relational distance (uses labels)

*
*

Subgraph Isomorphism

Given model graph M = (VM,EM)
 data graph D = (VD,ED)

Find 1-1 mapping h:VM → VD

satisfying (vi,vj) ∈ EM ⇒ ((h(vi),h(vj)) ∈ ED.

DS.GR.21

Method: Backtracking Tree Search

1 2 b

3

a c

de

M D

root

1,c 1,d

3,c 3,a

1,a 1,b 1,e

2,b 2,c 2,a 2,c

3,d 3,e 3,d
X X

X X X X YES!

.

. . .

DS.GR.22

procedure Treesearch(VM, VD, EM, ED, h)
 {
 v = first(VM);
 for each w ∈ VD
 {
 h’ = h ∪ {(v,w)};
 OK = true;
 for each edge (vi,vj) in EM satisfying that
 either 1. vi = v and vj ∈ domain(h’)
 or 2. vj = v and vi ∈ domain(h’)
 if ((h’(vi),h’(vj)) ∉ ED)
 {OK = false; break;};

 if OK {
 VM’ = VM – v;
 VD’ = VD – w’
 if isempty(VM’) output(h’);
 else Treesearch(VM’,VD’,EM,ED,h’)
 } } }

Treesearch for Subgraph Isomorphism
in Digraphs

DS.GR.23Branch-and-Bound Tree Search

Keep track of the least-error mapping.

1 2 b

3

a c

d

M D

root

3,c 3,a

1,a

2,b 2,c 2,d 2,a

3,c
X X

X

. . .

map_err = 0
bound_err = 99999

1,b
map_err = 0

map_err = 1

map_err = 1
bound_err = 1
mapping = {(1,a)(2,b)(3,c)}

map_err = 0

2,d2,c

X X

map_err = 0; bound_err = 1
mapping = {(1,b)(2,d)(3,c)}

map_err = 0

