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DS.H.1

Hashing

Chapter 5 Overview

• The General Idea

• Hash Functions

• Separate Chaining

• Open Addressing

• Rehashing

• Extendible Hashing

Application Example:  Geometric Hashing
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Why should we consider another indexing
technique when B-trees are so great?

 • To avoid the multi-level index structure
      on disk.

• To get a small constant search time for
      equality queries to databases.

• To provide another structure that is useful
       for internal memory look-up tables.
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HASHING

Given:

   1. a relatively large block of storage
       called the hash table

   2. an attribute or key

Possible Goals:

   1. Insert: store the key and its value in
       the table.

   2. Find: find the key in the table and
       return its value.

   3. Delete: remove the key and its value
       from the table.
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Hash Function: 

A hash function  maps keys to ‘random’
addresses within the hash table.

Example:

Let the hash table be N locations long.

Suppose the keys are integers or can somehow
be converted to integers.

f(key) = key % N   /* key modulo N */

is the most common, simple hash function.

NOTE:  in hashing, the potential number of
possible keys is much greater than the number 
of keys in use at any given time.
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Example: 

Let N = 50 and suppose there are 300
possible keys, but we don’t expect to have
more than 50 in the table at once.

             f(key) = key % 50

Key                       Table Address

    1                                   1
   49                                49
  256                                 6
    75                               25
  125                               25
  175                               25

collision

There are many different ways to resolve collisions.
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First, a few more hash functions

Numeric Keys:

h1(key) = key % N

h2(key) = extract(P, Q, key*C) 

/* Start at bit position P of key*C
    and extract Q bits to generate
    addresses in the correct range */

h3(key) = irand(N, key) 

/* Feed the key as a seed to a random
    number generator and normalize to
    an integer between 0 and N-1 */
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Character String Keys:

h4(key) = char_sum(key) % N

/* Add together the byte representations
   of each of the characters and normalize
   to table size */

h5(key) = extract(P, Q, char_product(key))

/* Multiply together the byte representations
    of each of the characters and extract Q
    bits starting at bit P to generate addresses
    in the correct range */

h6(key) = ∑ key[keysize – i –1] * 32

   modulo table size (book’s Fig 5.5 is wrong)

i = 0

keysize - 1
i
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Separate Chaining

Separate chaining is a collision strategy
that uses linked lists to solve the collision
problem.

A “bin” of the hash table merely points
to a linked list that hold all keys that hash
to that bin.

    
    
    

75       

      

125      175    25

Bin 25 holds 3 different keys.

Separate chaining is very flexible, makes
insertion and deletion easy, but it requires
pointers, which isn’t so good on disk.
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Open Addressing

Open addressing uses one big contiguous
hash table. 

When there is a collision, it tries alternate
locations, using the function:

     hi(x) = ( hash(x) + F(i) ) % N

It first tries h0(x), then h1(x), etc. until
it finds the key in the table or comes to an
empty cell to put it in.

      
 75

125

175

h0(x) = 25

h1(x) = 30

h2(x) = 35

So how do we define F(i)?
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There are several common ways:

• Linear Probing
      /* F(i) is a linear function of i */

      F(i) = i  is most common.  

It tries the next position for each probe.

      h(0) = hash(x)
      h(1) = hash(x) + 1
      h(2) = hash(x) + 2

This is simple, but has the problem of
primary clustering.

Clusters develop in the table and most 
keys lead to some search.
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2.   Quadratic Probing
      /* F(i) is a quadratic function of i */

      F(i) = i  

This spreads out the probes more.

      h(0) = hash(x)
      h(1) = hash(x) + 1
      h(2) = hash(x) + 4

This works better, but some secondary
clustering effects have been reported.
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Theorem: If quadratic probing is used and the
table size is prime, then a new element can 
always be inserted if the table is at least half
empty.  (proof by contradiction is readable)
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3. Double hashing

/* Use a second hash function */

      F(i) = i * hash2(x)

This spreads out the probes more.

      h(0) = hash(x)
      h(1) = hash(x) + 1 * hash2(x)
      h(2) = hash(x) + 2 * hash2(x)

Variant:  use a sequence of hash functions

       h(i) = x      % N
i+1

Disadvantage of Open Addressing:  
    deletion is difficult.     Why?
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Rehashing

/* If the table is getting too full,
    rebuild it with twice the space.

    Do this infrequently and at night. */

70 Louis Smith
45 John Smith
52 Kate Green
97 Ray Finch
94 Craig Mir

0
1
2
3
4

0
1
2
3
4
5
6
7
8
9

70 Louis Smith

52 Kate Green

94 Craig Mir
45 John Smith

97 Ray FinchWhy is 45 in bin 1
when 45 % 5 = 0?
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Complexity Analysis

Let N be the number of entries in the table
   at the current time.

Let T be the table size.

Let λ = N/T be the load factor.

Chaining:

N can be larger or smaller than T.
e.g. We can have 10 lists of 5 elements each.

1.   What is the longest any list can be?

2.   What is the shortest any list can be?

3.   What is the average length of a list?
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Complexity Analysis

N entries, table size T, λ=N/T

Chaining:

1.   What is the longest any list can be?     N

2.   What is the shortest any list can be?     0

• What is the average length of a list?

When λ=1, N = T, so average 1 element / list.
When λ=2, N = 2T, so average 2 elements / list.
General case: the average list has λ elements.

Search time: T(N,T) = c1 + c2(λ/2) = O(λ) = O(N/T)

 Insertion time:  O(1)        why?

hash    search a list
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Open Addressing:

N ≤ T,   λ << 1   (full is BAD)

Linear Probing:

What is the average number of cells probed
in a successful search?

λ = percentage of full cells.
(1- λ) is the percentage of empty cells.

1/(1- λ) is the number of cells searched
             before an empty one is found.

Maximum probes is 1 + 1/(1- λ) . 
Average probes is ½(1 + 1/(1- λ) ) .
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Linear Probing:

λ =  N/T = percentage of full cells.

Successful Search: ½(1 + 1/(1- λ) )

Insert or Unsuccessful Search: ½(1 + 1/(1- λ)  )

Examples: 
λ = .25     ⇒      1
λ = .99     ⇒     50

Examples:
λ = .1    ⇒  1          λ = .5    ⇒        3
λ = .75  ⇒  9          λ = .99  ⇒  5000
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Extendible Hashing

Extendible hashing is a fast access method
for dynamic files.

For data on disk, we don’t want to chase
pointers.

Suppose that m (key, data) pairs fit in one
disk block and that the hash function returns
a bit string.

- Keep a directory that is organized according
  to the leading D bits of the hash value.

- D changes dynamically as the table grows.
 
- Use only enough bits to distinguish blocks.
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 0      1

0 0 0 0
0 0 1 0
0 1 0 0
0 1 0 1

0 1 0 0 0
1 0 0 1
1 0 1 0
1 1 0 0

1

Suppose we add key  0010.
It belongs in bucket 0, which is full.
So we split it into buckets 00 and 01.

D=1 (bit)

0 0 0 0
0 0 1 0

0 1 0 0
0 1 0 1
0 1 1 0

1 0 0 0
1 0 0 1
1 0 1 0
1 1 0 0

0 0      0 1      1 0      1 1

00 01 1

D=2
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In extendible hashing, the index grows as
needed.

Complexity:

       N:   entries
       M:  block size

Expected number of leaves:   (N/M) log  e

Expected directory size:        O(N         / M)

The bigger M is the better.

2
1+1/M
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Hashing Applications

• in compilers: to store and access identifiers

• in databases: for fast equality queries

• in image analysis for storing large structures

• Region Adjacency Graph Construction

• Geometric Hashing

Large number of regions with only
a small percentage active at one time.

Large number of (object, transform)
pairs requiring lots of quick lookups.


