
1

DS.H.1

Hashing

Chapter 5 Overview

• The General Idea

• Hash Functions

• Separate Chaining

• Open Addressing

• Rehashing

• Extendible Hashing

Application Example: Geometric Hashing

DS.H.2

Why should we consider another indexing
technique when B-trees are so great?

 • To avoid the multi-level index structure
 on disk.

• To get a small constant search time for
 equality queries to databases.

• To provide another structure that is useful
 for internal memory look-up tables.

DS.H.3

HASHING

Given:

 1. a relatively large block of storage
 called the hash table

 2. an attribute or key

Possible Goals:

 1. Insert: store the key and its value in
 the table.

 2. Find: find the key in the table and
 return its value.

 3. Delete: remove the key and its value
 from the table.

DS.H.4

Hash Function:

A hash function maps keys to ‘random’
addresses within the hash table.

Example:

Let the hash table be N locations long.

Suppose the keys are integers or can somehow
be converted to integers.

f(key) = key % N /* key modulo N */

is the most common, simple hash function.

NOTE: in hashing, the potential number of
possible keys is much greater than the number
of keys in use at any given time.

DS.H.5

Example:

Let N = 50 and suppose there are 300
possible keys, but we don’t expect to have
more than 50 in the table at once.

 f(key) = key % 50

Key Table Address

 1 1
 49 49
 256 6
 75 25
 125 25
 175 25

collision

There are many different ways to resolve collisions.

DS.H.6

First, a few more hash functions

Numeric Keys:

h1(key) = key % N

h2(key) = extract(P, Q, key*C)

/* Start at bit position P of key*C
 and extract Q bits to generate
 addresses in the correct range */

h3(key) = irand(N, key)

/* Feed the key as a seed to a random
 number generator and normalize to
 an integer between 0 and N-1 */

2

DS.H.7

Character String Keys:

h4(key) = char_sum(key) % N

/* Add together the byte representations
 of each of the characters and normalize
 to table size */

h5(key) = extract(P, Q, char_product(key))

/* Multiply together the byte representations
 of each of the characters and extract Q
 bits starting at bit P to generate addresses
 in the correct range */

h6(key) = ∑ key[keysize – i –1] * 32

 modulo table size (book’s Fig 5.5 is wrong)

i = 0

keysize - 1
i

DS.H.8
Separate Chaining

Separate chaining is a collision strategy
that uses linked lists to solve the collision
problem.

A “bin” of the hash table merely points
to a linked list that hold all keys that hash
to that bin.

75

125 175 25

Bin 25 holds 3 different keys.

Separate chaining is very flexible, makes
insertion and deletion easy, but it requires
pointers, which isn’t so good on disk.

DS.H.9

Open Addressing

Open addressing uses one big contiguous
hash table.

When there is a collision, it tries alternate
locations, using the function:

 hi(x) = (hash(x) + F(i)) % N

It first tries h0(x), then h1(x), etc. until
it finds the key in the table or comes to an
empty cell to put it in.

 75

125

175

h0(x) = 25

h1(x) = 30

h2(x) = 35

So how do we define F(i)?

DS.H.10

There are several common ways:

• Linear Probing
 /* F(i) is a linear function of i */

 F(i) = i is most common.

It tries the next position for each probe.

 h(0) = hash(x)
 h(1) = hash(x) + 1
 h(2) = hash(x) + 2

This is simple, but has the problem of
primary clustering.

Clusters develop in the table and most
keys lead to some search.

DS.H.11

2. Quadratic Probing
 /* F(i) is a quadratic function of i */

 F(i) = i

This spreads out the probes more.

 h(0) = hash(x)
 h(1) = hash(x) + 1
 h(2) = hash(x) + 4

This works better, but some secondary
clustering effects have been reported.

2

Theorem: If quadratic probing is used and the
table size is prime, then a new element can
always be inserted if the table is at least half
empty. (proof by contradiction is readable)

DS.H.12

3. Double hashing

/* Use a second hash function */

 F(i) = i * hash2(x)

This spreads out the probes more.

 h(0) = hash(x)
 h(1) = hash(x) + 1 * hash2(x)
 h(2) = hash(x) + 2 * hash2(x)

Variant: use a sequence of hash functions

 h(i) = x % N
i+1

Disadvantage of Open Addressing:
 deletion is difficult. Why?

3

DS.H.13

Rehashing

/* If the table is getting too full,
 rebuild it with twice the space.

 Do this infrequently and at night. */

70 Louis Smith
45 John Smith
52 Kate Green
97 Ray Finch
94 Craig Mir

0
1
2
3
4

0
1
2
3
4
5
6
7
8
9

70 Louis Smith

52 Kate Green

94 Craig Mir
45 John Smith

97 Ray FinchWhy is 45 in bin 1
when 45 % 5 = 0?

DS.H.14

Complexity Analysis

Let N be the number of entries in the table
 at the current time.

Let T be the table size.

Let λ = N/T be the load factor.

Chaining:

N can be larger or smaller than T.
e.g. We can have 10 lists of 5 elements each.

1. What is the longest any list can be?

2. What is the shortest any list can be?

3. What is the average length of a list?

DS.H.15

Complexity Analysis

N entries, table size T, λ=N/T

Chaining:

1. What is the longest any list can be? N

2. What is the shortest any list can be? 0

• What is the average length of a list?

When λ=1, N = T, so average 1 element / list.
When λ=2, N = 2T, so average 2 elements / list.
General case: the average list has λ elements.

Search time: T(N,T) = c1 + c2(λ/2) = O(λ) = O(N/T)

 Insertion time: O(1) why?

hash search a list

DS.H.16

Open Addressing:

N ≤ T, λ << 1 (full is BAD)

Linear Probing:

What is the average number of cells probed
in a successful search?

λ = percentage of full cells.
(1- λ) is the percentage of empty cells.

1/(1- λ) is the number of cells searched
 before an empty one is found.

Maximum probes is 1 + 1/(1- λ) .
Average probes is ½(1 + 1/(1- λ)) .

DS.H.17

Linear Probing:

λ = N/T = percentage of full cells.

Successful Search: ½(1 + 1/(1- λ))

Insert or Unsuccessful Search: ½(1 + 1/(1- λ))

Examples:
λ = .25 ⇒ 1
λ = .99 ⇒ 50

Examples:
λ = .1 ⇒ 1 λ = .5 ⇒ 3
λ = .75 ⇒ 9 λ = .99 ⇒ 5000

DS.H.18

Extendible Hashing

Extendible hashing is a fast access method
for dynamic files.

For data on disk, we don’t want to chase
pointers.

Suppose that m (key, data) pairs fit in one
disk block and that the hash function returns
a bit string.

- Keep a directory that is organized according
 to the leading D bits of the hash value.

- D changes dynamically as the table grows.

- Use only enough bits to distinguish blocks.

4

DS.H.19

 0 1

0 0 0 0
0 0 1 0
0 1 0 0
0 1 0 1

0 1 0 0 0
1 0 0 1
1 0 1 0
1 1 0 0

1

Suppose we add key 0010.
It belongs in bucket 0, which is full.
So we split it into buckets 00 and 01.

D=1 (bit)

0 0 0 0
0 0 1 0

0 1 0 0
0 1 0 1
0 1 1 0

1 0 0 0
1 0 0 1
1 0 1 0
1 1 0 0

0 0 0 1 1 0 1 1

00 01 1

D=2

DS.H.20

In extendible hashing, the index grows as
needed.

Complexity:

 N: entries
 M: block size

Expected number of leaves: (N/M) log e

Expected directory size: O(N / M)

The bigger M is the better.

2
1+1/M

DS.H.21

Hashing Applications

• in compilers: to store and access identifiers

• in databases: for fast equality queries

• in image analysis for storing large structures

• Region Adjacency Graph Construction

• Geometric Hashing

Large number of regions with only
a small percentage active at one time.

Large number of (object, transform)
pairs requiring lots of quick lookups.

