

DS.S. 2	
Representing Partitions	
Any set S can be partitioned into a set of equivalence classes defined by some relation R.	
Example:	
$S=\{1,2,3,4,5,6,7,8\}$	
$\mathrm{R}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x} \bmod 3=\mathrm{ymod} 3\}$	
The equivalence relation R partitions S into 3 sets S1, S2, and S3 whose union is S.	
$\mathrm{S} 1=\{1,4,7\}$	
$\mathrm{S} 2=\{2,5,8\}$	Partition of S into 3 sets
$\mathrm{S} 3=\{3,6\}$	

The Data Structure
We need a data structure to represent
partitions.
The structure must allow us to:
- find the "name" of an equivalence
class (find)
- merge two equivalence classes (union)
- determine if two elements x and y are
in the same equivalence class
The structure is sometimes called the
union-find data structure.

Smarter Unions
Instead of always making the second tree a subtree of the first, be smarter about it.
Union by Size: Keep track of the set sizes and make the smaller tree a subset of the larger. Union by Height: Keep track of the tree heights and make the shorter tree a subset of the deeper. Implementation: Instead of adding a size (or height) field, replace each initial zero with -1, meaning trees of size 1. As the tree grows S(i) =parent(i) if node i has a parent negated size of i's subtree, otherwise

DS.S. 10
Application: Efficient Connected Components
The efficient connected components makes two sequential passes down the image and uses the union-find structure to keep track of different labels that all belong to the same component.
-Look at 2 rows of the binary image at a time

If a 1-pixel has no already-labeled neighbors in the previous row or to its left in the current row, assign it a new label.
-If it has such neighbors, and they all have the same label, assign it that label

