
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: Data Structures and Algorithms

Pete Morcos

University of Washington

Spring 2000

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

What you know already

• control flow (if, while, for)

• basic data types, struct

• arrays

• pointers
• memory management (malloc(), free())

– we’ll review the last two next week

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

Data Structures

• Programs input, manipulate, and output data

• Need to organize data in a natural way

• Size of data unknown, may vary during execution

• Choice of organization central to program design
– Some operations become easier or harder

– Speed of program

– Memory usage

– Ease of program maintenance, debugging

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

4

Course goals for data structures

• Study several very important structures, and 
different implementation techniques

• Learn how to choose the “best” one

• Teach you how to modify standard structures for 
specific purposes, or create new ones

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Algorithm Analysis

• Algorithm: the sequence of steps a program takes 
to accomplish a task

• Choice of algorithm has a huge impact on 
efficiency

• Often a tight connection between choice of data 
structure and choice of algorithm

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

Course goals for algorithm analysis

• A bit of theory will give us a framework for 
comparing algorithms

• See how to weigh advantages and disadvantages
– usually performance-related

• Study a number of standard algorithms that you’ll 
use often



2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Example: expense tracking

• A program to track your spending, so you can see 
where the money is going

typedef char name[120];

typedef enum {FOOD, BOOKS, MUSIC, OTHER} category;

typedef struct _transaction {
double amount;

name who;

category what;

date when;

} transaction;

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Expense tracking implementation

• Operations we might want:
– add()

– delete()

– find()

– subtotal()
• OK, how about:

const int DB_SIZE = 10000;
transaction database[DB_SIZE];

– pros? cons?
0 DB_SIZE

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

9

Abstract Data Types (ADTs)

• A black box that supports a set of operations
– In principle, user doesn’t know what goes on inside

• Desirable properties:
– high speed on all operations

– low memory usage

– general purpose

• In reality, tension between all these goals forces us 
to make practical engineering decisions

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

Example 2: billiard ball simulator

• It’s often useful to use computers to simulate a 
physical process
– difficult or expensive to do in reality

– easier to extract data about the process

• Done by scientists all the time (e.g. galactic 
collisions); also by engineers (e.g. bridges, new 
microprocessors)

• Suppose you wanted to simulate billiard balls 
colliding on a pool table?

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

Billiard balls cont’d

typedef struct _ball {

int number;

double vel_x, vel_y;

double spin, mass;

} ball;

• Decide we want approx. 1 mm accuracy in x, y

• Surface is several feet wide, long

• Important to quickly check for nearby objects

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

12

Billiard balls cont’d

• Operations:
– move_ball()

– find_nearest()

– check_for_collision()

• Try an array, as we did with expense tracker:
– ball *table[3000][2500];

• Pros? Cons?



3

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

13

Billiard ball evaluation

• Hmm

• Not obvious how to keep the pros

• We will see some data structures later that will 
help

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

14

For you to do

• Visit course website

• Sign up for mailing list (details on web page)

• Read Chapter 1

• Find the lab, make sure you can run Visual C++

• Next time: math and C review


