
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: Review

Pete Morcos

University of Washington

3/29/2000

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

Important Math Stuff

• You need to be familiar with:
– Exponents

– Logarithms

– Modulo arithmetic

– Series

– Recursion

– Proof techniques, especially induction

• We’ll talk about some today, but read section 1.2
in book

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

Logs, Exponents

• Since we love binary numbers, we almost always
want to think about things in base 2

• Thanks to the following formulas...
– AB = (2logA)B = 2logA*B

– logXY = log2Y / log2X

• ...we know that any base is equivalent to base 2
within a constant factor somewhere in the formula

• Base 2 is always assumed

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

4

Series - Arithmetic

• 1 + 2 + 3 + 4 + ... + N = ?

N

Σ i
i=0

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Series - Geometric

• 1 + 2 + 4 + 8 + ... + 2N = ?

N

Σ 2i

i=0

• These two series are very common—memorize them.

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

Recursion

• A function that calls itself is said to recurse

• Sometimes a natural way to express a repetitive
algorithm, as opposed to using explicit iteration
(for loops, while loops)

• A classic example: the Fibonacci numbers
– 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

– First two are defined to be 1

– Rest are the sum of the preceding two: Fi = Fi-1 + Fi-2

2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Recursive Fibonacci

int fib(int i) {

if (i<0) return 0; // error value

if (i==0 || i==1) return 1;

else return fib(i-1) + fib(i-2);

}

• Easy to write, looks a lot like the mathematical
definition

• There is a big problem, though; what is it?

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Fibonacci Calls

N

N-1

N-2

N-3

N-4

.....

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

9

Iterative Fibonacci

int fib_it(int i) {

int fib1 = 1, fib2 = 1, fibj = 1;

if (i<0) return 0; // error value

for (int j=2; j<=i; j++) {

fibj = fib1 + fib2;

fib2 = fib1; // shift values for next iteration

fib1 = fibj;

}

return fibj;

}

• We have to do more bookkeeping this way.

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

Recursion Summary

• Be sure to get the base case(s) correct!

• Each step must get you closer to the base case.

• Function calls aren’t free; actually a fairly
expensive operation

• Recursion can be very neat, but beware of
generating huge numbers of calls

• Also realize that there is a hidden space cost in the
system’s stack; might be more than you need

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

Proof by Induction

• How do you create an infinite number of specific
proofs? (often a function of n ≥ 0)

• As with recursion: base case, self-referencing case

• Base case is “proven” by inspection

• All other cases proven in this standard way:
– Assume all cases 1, 2, ..., k-2, k-1, k are true

– Given that, show that case k+1 is true

• Together, these prove it for all values of n

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

12

Proof by Induction Example

• A complete binary tree of depth d contains 2d+1-1
nodes

depth 0

depth 1

depth 2

depth 3

3

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

13

The Proof

• Base case, k = 0?
• Inductive step, given 1..k, show k+1?

• Other proof techniques: contradiction,
counterexample, inspection

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

14

C Review

• C
typedef struct {

int x,y,z;

} node;

function args that get changed:
pointer vars: int *px

malloc(), free()

char name[100];

printf(“age:%d, name:%s\n”,
age, name);

• C++
class node {

public:

int x,y,z;

};

reference vars: int& x

new, delete

String name;

cout << “age:” << age <<
“name:” << name << “\n”;

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

15

Pointers and Memory

• Recall that memory is a one-dimensional range of bytes,
each with an address

• Pointer vars contain an address, rather than an
int/char/float

int *pint, y, *pint2; // ‘*’ needed on each ptr variable

y = 3;

pint = &y; // assign address of y to pint

*pint = 42; // put 42 in location pint points to

printf(“%d”, y); // prints out 42

• Vital to know difference between address & value

• Ptrs to ptrs: “int ***pppint”

• What happens if you say “*pint2 = 43;” ?

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

16

Thinking about Pointers

• Arrows • Memory values

Bob

Catherine

Andrew

Dave

node *head;

Catherine, 2500752030

26010

Dave, 025007

...

Andrew, 200021000

...

12393

12392

12391

head = 2100012390

...

Bob, 520302000

1000

0

Ptrs
take
up 4
bytes

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

17

Memory Management

• When you declare a variable inside a procedure,
space is allocated for it on the stack

• We’ll often need to allocate an unknown number
of variables at runtime

typedef struct _node {int value; struct _node *next;} node;

node *curnode = malloc(sizeof(node));

for (int i=0; i<1000; i++) {

curnode->next = (node*)malloc(sizeof(node));

curnode = curnode->next;

}

curnode->next = NULL;

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

18

malloc, free

• malloc allocates a specified number of bytes
• Use the sizeof operator to compute how many
• malloc returns a “void *”, the generic pointer type
• Cast operation “(node*)” tells compiler to pretend

this variable is a different type
• To deallocate, call free() and pass a pointer to an

object allocated with malloc()
• Don’t mix up new/delete and malloc/free pairs!
• You may use whichever style you prefer

4

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

19

Think about for next time

• Ops for linked lists:
– add(char *newname)

– remove(node *node_to_kill)

– find(char *searchname)

– removeAll(node *head_of_list)

– getNext(node *current_node)

– getPrev(node *current_node)

• What are the costs?

Bob

Catherine

Andrew

Dave

node *head;

