
1

http://www.cs.washington.edu/education/courses/cse373/00sp

CSE 373: Asymptotic Analysis
book chapter 2 

Pete Morcos

University of Washington

3/31/00

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

2

Quick Example

• Ops for linked lists:
– add(char *newname)

– remove(node *node_to_kill)

– find(char *searchname)

– removeAll(node *head_of_list)

– getNext(node *current_node)

– getPrev(node *current_node)

• What are the costs?

Bob

Catherine

Andrew

Dave

node *head;

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

3

Picking an algorithm

0

2

4

6

8

10

12

0 2 4 6 8 10 12

• Which one is the best choice?

time

N

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

4

As N grows...

0

50

10 0

15 0

20 0

25 0

30 0

35 0

0 20 40 60 80 10 0 12 0 N

time

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

5

Asymptotic Behavior

• We’re interested in the performance as N→∞, not 
the fluctuations at small N

• Given functions T1(N), T2(N), we need a way to 
decide which is the better choice

• Asymptotic behavior is most important

• Lower order behavior might matter in practice, 
especially if you are sure that small N will be 
common

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

6

Big-Oh Notation

• Formally:
– T(n) = O(f(n)) iff. there are positive constants c and n0

such that T(n) ≤ c · f(n) for all n ≥ n0

• log n, n, 2000 n + log n all = O(n)

– T(n) = Ω(f(n)) iff. there are positive constants c and n0

such that T(n) ≥ c · f(n) for all n ≥ n0

• n2, 2n, 0.000001 · n1.5 all = Ω(n)

– T(n) = Θ(f(n)) iff. T(n) = O(f(n)) and T(n) = Ω(f(n))

• Can ignore constant factors. In sums, largest term 
overrides the rest (e.g. O(n2 + n log n + n) = O(n2)



2

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

7

Common Growth Rates

constant: O(1)
“log log”: O(log(log n))

logarithmic: O(log n)
“log squared”: O(log2 n)

linear: O(n)
“n log n”: O(n · log n)
quadratic: O(n2)

cubic: O(n3)
exponential: O(2n)

polynomial
time

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

8

Doing the analysis

• Treat all sequences of basic statements as O(1)
– Even if it does 1,000,000 things, as long as that 

1,000,000 is a constant and not a function of n, it’s O(1)

• Conditionals: max of the alternatives

• Loops: if body is O(f(n)), loop is O(#iters*f(n))

• Function calls: not a single statement! Check each 
one to see if it depends on n.

• Recursive calls: trickier, depends on how much 
progress each call makes

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

9

Example

for (i=0; i<n; i++)
for (j=0; j<i; j++)

printf(“hello\n”);

• Outer loop is easy, O(n) iterations

• Inner loop changes each time!

• What is overall cost?

• How about:
for (i=n; i>=1; i/=2)

for (j=0; j<i; j++)
printf(“hello\n”);

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

10

• Consider a function to add an array recursively:
– int add() { return first-element + add(rest-of-array) }

– Addition is O(1). What is cost of recursive call?

• We can say that the time to add, T(n), is:
– O(1) if n = 1

– T(n-1) + O(1) if n > 1

• Obviously, T(n) = T(n-1) + O(1) = O(n)

• This is called a recurrence relation.

Analyzing Recursion

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

11

Recurrence Relations

• Commonly seen relations are
– T(n) = T(n-1) + Θ(1) O(n)

– T(n) = T(n-1) + Θ(n) O(n2)

– T(n) = T(n/2) + Θ(1) O(log n)

– T(n) = T(n/2) + Θ(n) O(n log n)

• Note: these formulas are sensitive to constants.
– T(n) = 9 T(n/3) + Θ(n) is O(n2), not O(n log n)!

• We’ll see this again later in the course; you’ll only 
need to know a few specific examples.

UW, Spring 2000 CSE 373: Data Structures and Algorithms
Pete Morcos

12

Summary

• Usually care about asymptotic behavior
– Low-n behavior can be important in practice

• Analyze both time and space costs this way

• Can get different results depending on whether 
you consider
– best case

– worst case

– average case

– most common case


