CSE 373: Asymptotic Analysis book chapter 2

Pete Morcos University of Washington 3/31/00

http://www.cs.washington.edu/education/courses/cse373/00sp

Quick Example

• Ops for linked lists:

∞→∞→∞→∞→∞→∞→∞→

- add(char *newname)
- remove(node *node_to_kill)
- find(char *searchname)
- removeAll(node *head_of_list)
- getNext(node *current_node)
- getPrev(node *current_node)
- What are the costs?

UW, Spring 2000 CSE 373: Data

CSE 373: Data Structures and Algorithms Pete Morcos Catherine -

2

Bob

node *head;

Andrew

Picking an algorithm

As N grows...

Asymptotic Behavior

- We're interested in the performance as N→∞, not the fluctuations at small N
- Given functions $T_1(N)$, $T_2(N)$, we need a way to decide which is the better choice
- Asymptotic behavior is most important
- Lower order behavior might matter in practice, especially if you are sure that small N will be common

UW, Spring 2000

CSE 373: Data Structures and Algorithms Pete Morcos 5

Big-Oh Notation

- Formally:
 - T(n) = O(f(n)) iff. there are positive constants c and n_0 such that T(n) $\leq c \cdot f(n)$ for all $n \geq n_0$
 - $\log n, n, 2000 n + \log n$ all = O(n) - T(n) = $\Omega(f(n))$ iff. there are positive constants c and n_0
 - such that $T(n) \ge c \cdot f(n)$ for all $n \ge n_0$ • $n^2, 2^n, 0.000001 \cdot n^{1.5}$ all $= \Omega(n)$
 - T(n) = $\Theta(f(n))$ iff. T(n) = O(f(n)) and T(n) = $\Omega(f(n))$
- Can ignore constant factors. In sums, largest term overrides the rest (e.g. $O(n^2 + n \log n + n) = O(n^2)$
- UW, Spring 2000 CSE 373: Data Structures and Algorithms Peter Morecos

6

Common Growth Rates

Doing the analysis

10

12

- Treat all sequences of <u>basic statements</u> as O(1)
 Even if it does 1,000,000 things, as long as that 1,000,000 is a constant and not a function of n, it's O(1)
- Conditionals: max of the alternatives

- Loops: if body is O(f(*n*)), loop is O(#iters*f(*n*))
- <u>Function calls</u>: not a single statement! Check each one to see if it depends on *n*.
- <u>Recursive calls</u>: trickier, depends on how much progress each call makes

UW, Spring 2000 CSE 373: Data Structures and Algorithms Pete Morcos

Example

- Outer loop is easy, O(n) iterations
- Inner loop changes each time!
- What is overall cost?

• How about:

for (i=n; i>=1; i/=2)
 for (j=0; j<i; j++)
 printf("hello\n");</pre>

UW, Spring 2000 CSE 373: Data Structures and Algorithms Pete Morcos

Analyzing Recursion

- Consider a function to add an array recursively:

 int add() { return first-element + add(rest-of-array) }
 Addition is O(1). What is cost of recursive call?
- We can say that the time to add, T(n), is: - O(1) if n = 1
 - T(n-1) + O(1)if n > 1
- Obviously, T(n) = T(n-1) + O(1) = O(n)
- This is called a recurrence relation.

UW, Spring 2000

m-m-m-m-m-m-m

CSE 373: Data Structures and Algorithms Pete Morcos

Recurrence Relations

	↦◨→◧→◧→◧→◨→◨→◨→◨→
Commonly seen relations ar	e
$- T(n) = T(n-1) + \Theta(1)$	O(<i>n</i>)
$- T(n) = T(n-1) + \Theta(n)$	$O(n^2)$
$- T(n) = T(n/2) + \Theta(1)$	$O(\log n)$
$- T(n) = T(n/2) + \Theta(n)$	$O(n \log n)$
 Note: these formulas are sensitive to constants. 	
$- T(n) = 9 T(n/3) + \Theta(n)$ is $O(n^2)$, not $O(n \log n)!$	
• We'll see this again later in the course: you'll only	

11

need to know a few specific examples.

UW, Spring 2000 CSE 373: Data Structures and Algorithms Pete Morcos

Summary

- Usually care about asymptotic behavior
 - Low-*n* behavior can be important in practice
- Analyze both time and space costs this way
- Can get different results depending on whether you consider

- best case

- worst case
- average case
- most common case

UW, Spring 2000 CSE 373: Data Structures and Algorithms Pete Morcos