CSE 373: Asymptotic Analysis

 book chapter 2Pete Morcos
University of Washington 3/31/00
\qquad

Quick Example

- Ops for linked lists:
- add(char *newname)
- remove(node *node_to_kill)
- find(char *searchname)
- removeAll(node *head_of_list)
- getNext(node *current_node)
- getPrev(node *current_node)
- What are the costs?

UW, Spring 2000
CSE 373: Data Structures and Algorithms $\begin{gathered}\text { Pete Morcos }\end{gathered}$

As N grows...
W \quad ■

Big-Oh Notation

相地

- Formally:
- $\mathrm{T}(n)=\mathrm{O}(\mathrm{f}(n))$ iff. there are positive constants c and n_{0} such that $\mathrm{T}(n) \leq c \cdot \mathrm{f}(n)$ for all $n \geq n_{0}$
- $\log n, n, 2000 n+\log n$ all $=\mathrm{O}(n)$
$-\mathrm{T}(n)=\Omega(\mathrm{f}(n))$ iff. there are positive constants c and n_{0} such that $\mathrm{T}(n) \geq c \cdot \mathrm{f}(n)$ for all $n \geq n_{0}$ $\cdot n^{2}, 2^{n}, 0.000001 \cdot n^{1.5} \mathrm{all}=\Omega(n)$
$-\mathrm{T}(n)=\Theta(\mathrm{f}(n))$ iff. $\mathrm{T}(n)=\mathrm{O}(\mathrm{f}(n))$ and $\mathrm{T}(n)=\Omega(\mathrm{f}(n))$
- Can ignore constant factors. In sums, largest term overrides the rest (e.g. $\mathrm{O}\left(n^{2}+n \log n+n\right)=\mathrm{O}\left(n^{2}\right)$

UW, Spring 2000 CSE 373: Data Structures and Algorithms

Common Growth Rates

```
            constant: O(1)
            "log log": O}(\operatorname{log}(\operatorname{log}n)
            logarithmic: O}(\operatorname{log}n
    "log squared": O(log2n)
            linear: O(n)
        "n log n": O(n\cdotlogn)
        quadratic: O(n)
            cubic: O( }\mp@subsup{n}{}{3}
    exponential: O(2 }\mp@subsup{2}{}{n
UW, Spring 2000 CSE 373: Data Strucures and Algorithms
```


Example

W \rightarrow ロ \rightarrow ロ for（ $i=0 ; i<n ; i++$ ） for（ $j=0 ; j<i ; j++$ ）

$$
\begin{aligned}
&=0 ; j<i ; j++) \\
& \text { printe }\left(" h e l l o \backslash n^{\prime}\right)
\end{aligned}
$$

－Outer loop is easy， $\mathrm{O}(\mathrm{n})$ iterations
－Inner loop changes each time！
－What is overall cost？
－How about：
for（ $i=n$ ；$i>=1 ; i /=2$ ） for（ $\left.\quad \begin{array}{l}j=0 ; j<i ; j++) \\ \\ \text { print } f\left(" h e l l o \backslash n^{\prime}\right)\end{array}\right)$ ； UW，Spring 2000 CSE 373：Data Structures and Algorithms

Recurrence Relations

W $\square \rightarrow \square \rightarrow \square$
－Commonly seen relations are

| $-\mathrm{T}(n)=\mathrm{T}(n-1)+\Theta(1)$ | $\mathrm{O}(n)$ |
| ---: | :--- | ---: |
| $-\mathrm{T}(n)=\mathrm{T}(n-1)+\Theta(n)$ | $\mathrm{O}\left(n^{2}\right)$ |
| $-\mathrm{T}(n)=\mathrm{T}(n / 2)+\Theta(1)$ | $\mathrm{O}(\log n)$ |
| $-\mathrm{T}(n)=\mathrm{T}(n / 2)+\Theta(n)$ | $\mathrm{O}(n \log n)$ |

－Note：these formulas are sensitive to constants． $-\mathrm{T}(n)=9 \mathrm{~T}(n / 3)+\Theta(n)$ is $\mathrm{O}\left(n^{2}\right)$ ，not $\mathrm{O}(n \log n)$ ！
－We＇ll see this again later in the course；you＇ll only need to know a few specific examples．

UW，Spring 2000 CSE 373：Data Structures and Algorithms

Doing the analysis
－Treat all sequences of basic statements as $\mathrm{O}(1)$ －Even if it does $1,000,000$ things，as long as that $1,000,000$ is a constant and not a function of n ，it＇s $\mathrm{O}(1)$
－Conditionals：max of the alternatives
－Loops：if body is $\mathrm{O}(\mathrm{f}(n))$ ，loop is $\mathrm{O}(\#$ iters＊ $\mathrm{f}(n))$
－Function calls：not a single statement！Check each one to see if it depends on n ．
－Recursive calls：trickier，depends on how much progress each call makes

UW，Spring 2000
CSE 373：Data Structures and Algorithms $\begin{gathered}\text { Pete Morcos }\end{gathered}$

Analyzing Recursion

为
－Consider a function to add an array recursively：
－int add（）\｛ return first－element＋add（rest－of－array）\} －Addition is $\mathrm{O}(1)$ ．What is cost of recursive call？
－We can say that the time to add，$T(n)$ ，is：
$-\mathrm{O}(1)$ if $\mathrm{n}=1$
$-\mathrm{T}(\mathrm{n}-1)+\mathrm{O}(1)$ if $\mathrm{n}>1$
－Obviously， $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{O}(1)=\mathrm{O}(\mathrm{n})$
－This is called a recurrence relation．

UW，Spring 2000

10

Summary

－Usually care about asymptotic behavior
－Low－n behavior can be important in practice
－Analyze both time and space costs this way
－Can get different results depending on whether you consider
－best case
－worst case
－average case
－most common case
UW，Spring 2000 CSE 373：Data Stucucures mud Algoribms
${ }^{12}$

