[Exptate et e Me s e s M s Max Bax Ba e i e S ax Ba s Mas M s M Ba s Ma s M s s B e s e

Quick Example
CSE 373: Asymptotic Anaysis e o 0T TS T IS S I s
book chapter 2 « Opsfor linked lists: node *head;
— add(char *newname)
Pete Morcos — remove(node *node_to_Kkill)
University of Washington — find(char *searchname)
3/31/00 — removeAll(node *head_of _list)

— getNext(node * current_node)
— getPrev(node * current_node)
¢ What are the costs?

[e e e s e e

UW, Spring 2000 CSE 373: Data Structures and Algorithms 2
Pete Morcos
Picking an algorithm AsN grows...
» Which one is the best choice?
time time
12 —— 350
10 4 -7 . 300
el o immmmmmmmmmT -7 250
- 200
ol.-
150 J
4 100 4
2 —__,/ 50
0 0 =
0 2 4 6 8 10 12 N 0 120 N
UW, Spring 2000 CSE 373: Data Structures and Algorithms 3 UW, Spring 2000 CSE 373: Data Structures and Algorithms 4
Asymptotic Behavior Big-Oh Notation
« We'reinterested in the performance as N—eo, not « Formally:
the fluctuations at small N — T(n) = O(f(n)) iff. there are positive constants ¢ and n,
« Given functions T,(N), T,(N), we need away to suchthat T(n) < c - f(n) for all n>n,
decide which is the better choice * logn, n, 2000n +lognall =O(n)
. . . — T(n) = Q(f(n)) iff. there are positive congtants ¢ and n,
» Asymptotic behavior is most important such that T(n) = ¢ - f(n) for all n > ng
« Lower order behavior might matter in practice, * M 20, 0.000001 - 5 all = Q(n)
especialy if you are sure that small N will be = T(n) = ©(f(n)) iff. T(n) = O(f(n)) and T(n) = Q(f(n))
common « Canignore constant factors. In sums, largest term
overridestherest (e.g. O(n? + nlog n + n) = O(n?)
UW, Spring 2000 CSE 373: Data Structures and Algorithms 5 UW, Spring 2000 CSE 373: Data Structures and Algorithms 6

e Morcos Pete Morcos

Common Growth Rates

O

e

constant:
“loglog”:
logarithmic:
“log squared”:
linear:
“nlogn”:
quadratic:
cubic:
exponential:

UW, Spring 2000

o(1)

O(log(log n))

O(log n)

O(log2 n)

O(n)

O(n - logn) olynomial
o(n?) P)tlime
O(nd)

o(2)

CSE 373: Data Structures and Algorithms. 7

Pete Morcos

Example

fa e s e e 0a a2 n s un e a2 e s S o n £ e}

T (T O T+
for (i=0; i<n; i++
for (§=0; j<i; j++)
printf (“hello\n”) ;

« Outer loop is easy, O(n) iterations
 |nner loop changes each time!
¢ What is overall cost?

* How about:
for (i=n; i>=1; i/=2)
for (3=0; j<i; j++)
printf (“hello\n”);

UW, Spring 2000 CSE 373: Data Structures and Algorithms 9
Pete Morcos

Recurrence Relations

« Commonly seen relations are
—T(n) =T(n-1) + ©(1) o(n)
— T(n) =T(n-1) + ©(n) o(n?)
— T(n) =T(n/2) + B(1) O(log n)
— T(n) = T(n/2) + ©(n) O(nlog n)

* Note: these formulas are sensitive to constants.
— T(n) =9 T(n/3) + ©(n) is O(n?), not O(n log n)!

* We'll seethisagain later in the course; you'll only
need to know afew specific examples.

UW, Spring 2000 CSE 373: Data Structures and Algorithms. 1
Pete Morcos

Doing the analysis

¢ Treat all sequences of basic statements as O(1)

— Evenif it does 1,000,000 things, as long as that
1,000,000 is a constant and not afunction of n, it's O(1)

« Conditionals: max of the alternatives

« Loops: if body is O(f(n)), loop is O(#iters*f(n))

¢ Function calls: not a single statement! Check each
oneto seeif it dependson n.

» Recursive cals: trickier, depends on how much
progress each call makes

e

UW, Spring 2000 CSE 373: Data Structures and Algorithms 8
Pete Morcos

Analyzing Recursion

EHE o 1503+ + T o000
¢ Consider afunction to add an array recursively:
- int add() { return first-element + add(rest-of-array) }

— Addition is O(1). What is cost of recursive call?
« We can say that thetimeto add, T(n), is:
—-o)ifn=1
—T(n-1) +0()ifn>1
¢ Obviously, T(n) = T(n-1) + O(1) = O(n)
« Thisiscalled arecurrence relation.

UW, Spring 2000 CSE 373: Data Structures and Algorithms 10
Pete Morcos

Summary

O O O T O [T [T O T

¢ Usually care about asymptotic behavior
— Low-n behavior can be important in practice
« Analyze both time and space costs this way
« Can get different results depending on whether
you consider
— best case
— worst case
— average case
— most common case

e

UW, Spring 2000 CSE 373: Data Structures and Algorithms 12
Pete Morcos

